Fine Tuning of Torus-Shaped Mo-Doped Ni2P Nanorings for Enhanced Seawater Electrolysis
Abhinav Yadav
Department of Chemistry, University of Delhi, North Campus, Delhi, 110007 India
Search for more papers by this authorManash R. Das
Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006 India
Search for more papers by this authorCorresponding Author
Sasanka Deka
Department of Chemistry, University of Delhi, North Campus, Delhi, 110007 India
E-mail: [email protected]
Search for more papers by this authorAbhinav Yadav
Department of Chemistry, University of Delhi, North Campus, Delhi, 110007 India
Search for more papers by this authorManash R. Das
Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006 India
Search for more papers by this authorCorresponding Author
Sasanka Deka
Department of Chemistry, University of Delhi, North Campus, Delhi, 110007 India
E-mail: [email protected]
Search for more papers by this authorAbstract
Seawater, as one of nature's most plentiful resources, provides a virtually inexhaustible source for generating hydrogen via water electrolysis. Developing an efficient bifunctional electrocatalyst for direct seawater splitting is challenging but highly desirable. Herein, a donut-shaped Mo-doped Ni2P nanoring electrocatalyst is developed, which is promising for direct overall seawater splitting. The optimized Mo0.1Ni1.9P catalyst shows low overpotentials and Tafel slopes in addition to high turnover frequencies, mass activities, and exchange current densities. The Mo0.1Ni1.9P||Mo0.1Ni1.9P couple-based electrolyzer requires a cell voltage of only 1.45 V in 1.0 m KOH and 1.47 V in untreated alkaline real seawater electrolysis at 10 mA cm−2 current density. Industrially required current densities of 500 and 1000 mA cm−2 are achieved at record low voltages of 1.81 and 1.86 V, respectively, at 25 °C and 1.77 and 1.82 V, respectively, at 75 °C for overall alkaline seawater splitting. The catalyst exhibited long-term stability at 400 mA cm−2 during alkaline seawater electrolysis. The synergy between Mo ions with multiple oxidation states and Ni ions, and nanoring morphology play a crucial role in increasing active sites for enhanced seawater dissociation. This work highlights the potential of Mo-doped Ni2P nanorings as unique catalysts for seawater electrolysis.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202408036-sup-0001-SuppMat.pdf2.8 MB | Supporting Information |
smll202408036-sup-0002-VideoS1.mp48.1 MB | Supplemental Video 1 |
smll202408036-sup-0003-VideoS2.mp48.7 MB | Supplemental Video 2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad4998.
- 2 International Renewable Energy Agency, Global energy transformation: A roadmap to 2050 (2019 edition), IRENA, Abu Dhabi 2019.
- 3M. F. Lagadec, A. Grimaud, Nat. Mater. 2020, 19, 1140.
- 4M. Chatenet, B. G. Pollet, D. R. Dekel, F. Dionigi, J. Deseure, P. Millet, R. D. Braatz, M. Z. Bazant, M. Eikerling, I. Staffell, P. Balcombe, Y. Shao-Horn, H. Schäfer, Chem. Soc. Rev. 2022, 51, 4583.
- 5J. A. Turner, Science 2004, 305, 972.
- 6 Internatonal Energy Agency, Global-Hydrogen-Review 2021, IEA, Paris 2021.
10.1787/39351842-en Google Scholar
- 7D. Tonelli, L. Rosa, P. Gabrielli, K. Caldeira, A. Parente, F. Contino, Nat. Commun. 2023, 14, 5532.
- 8Y. Luo, Z. Zhang, M. Chhowalla, B. Liu, Adv. Mater. 2022, 34, 2108133.
- 9J. Niklas Hausmann, R. Schlögl, P. W. Menezes, M. Driess, Energy Environ. Sci. 2021, 14, 3679.
10.1039/D0EE03659E Google Scholar
- 10Z. Yu, L. Liu, Adv. Mater. 2023, 36, 2308647.
- 11M. A. Khan, T. Al-Attas, S. Roy, M. M. Rahman, N. Ghaffour, V. Thangadurai, S. Larter, J. Hu, P. M. Ajayan, M. G. Kibria, Energy Environ. Sci. 2021, 14, 4831.
- 12H. Shi, T. Wang, J. Liu, W. Chen, S. Li, J. Liang, S. Liu, X. Liu, Z. Cai, C. Wang, D. Su, Y. Huang, L. Elbaz, Q. Li, Nat. Commun. 2023, 14, 3934.
- 13L. Zhou, D. Guo, L. Wu, Z. Guan, C. Zou, H. Jin, G. Fang, X. Chen, S. Wang, Nat. Commun. 2024, 15, 2481.
- 14E. Najafidehaghani, Z. Gan, A. George, T. Lehnert, G. Q. Ngo, C. Neumann, T. Bucher, I. Staude, D. Kaiser, T. Vogl, U. Hübner, U. Kaiser, F. Eilenberger, A. Turchanin, Adv. Funct. Mater. 2021, 31, 2101086.
- 15K.-S. Exner, J. Anton, T. Jacob, H. Over, Angew. Chem. 2014, 126, 11212.
- 16F. Yu, H. Zhou, Y. Huang, J. Sun, F. Qin, J. Bao, W. A. Goddard, S. Chen, Z. Ren, Nat. Commun. 2018, 9, 2551.
- 17Y. Zang, D.-Q. Lu, K. Wang, B. Li, P. Peng, Y.-Q. Lan, S.-Q. Zang, Nat. Commun. 2023, 14, 1792.
- 18M. Batool, A. Hameed, M. A. Nadeem, Chem. Rev. 2023, 480, 215029.
- 19Y. Li, A. Feng, L. Dai, B. Xi, X. An, S. Xiong, C. An, Adv. Funct. Mater. 2024, 34, 2316296.
- 20X.-W. Lv, W.-W. Tian, Z.-Y. Yuan, Electrochem. Energy Rev. 2023, 6, 23.
- 21X. Wang, Y. V. Kolen'ko, X.-Q. Bao, K. Kovnir, L. Liu, Angew. Chem., Int. Ed. 2015, 54, 8188.
- 22H. Zhang, A. W. Maijenburg, X. Li, S. L. Schweizer, R. B. Wehrspohn, Adv. Funct. Mater. 2020, 30, 2003261.
- 23M. R. Kandel, U. N. Pan, P. P. Dhakal, R. B. Ghising, S. Sidra, D. H. Kim, N. H. Kim, J. H. Lee, Small 2024, 20, 2307241.
- 24A. Shahroudi, S. Habibzadeh, Sci. Rep. 2024, 14, 16818.
- 25E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, R. E. Schaak, J. Am. Chem. 2013, 135, 9267.
- 26H. Ariga, M. Kawashima, S. Takakusagi, K. Asakura, Chem. Lett. 2013, 42, 1481.
- 27W. Papawassiliou, J. P. Carvalho, N. Panopoulos, Y. Al Wahedi, V. K. S. Wadi, X. Lu, K. Polychronopoulou, J. B. Lee, S. Lee, C. Y. Kim, H. J. Kim, M. Katsiotis, V. Tzitzios, M. Karagianni, M. Fardis, G. Papavassiliou, A. J. Pell, Nat. Commun. 2021, 12, 4334.
- 28M.d G. Moula, S. Suzuki, W.-J. Chun, S. Otani, S. T. Oyama, K. Asakura, Chem. Lett. 2005, 35, 90.
- 29Q. Wang, H. Zhao, F. Li, W. She, X. Wang, L. Xu, H. Jiang, J. Mater. Chem. A. 2019, 7, 7636.
- 30H. Roh, H. Jung, H. S. Choi, J. W. Han, J. Y. Park, S.-K. Kim, K. Yong, Appl. Catal. B: Environ. 2021, 297, 120434.
- 31Y. Sun, L. Hang, Q. Shen, T. Zhang, H. Li, X. Zhang, X. Lyu, Y. Li, Nanoscale 2017, 9, 16674.
- 32R.-K. Chiang, R.-T. Chiang, Inorg. Chem. 2006, 46, 369.
- 33Y. Pan, Y. Liu, J. Zhao, K. Yang, J. Liang, D. Liu, W. Hu, D. Liu, Y. Liu, C. Liu, J. Mater. Chem. A. 2015, 3, 1656.
- 34K. Bi, Y. Wang, G. Zhou, J. Mater. Chem. A. 2023, 11, 11696.
- 35L. Kurnianditia Putri, B. Ng, R. Yow, W. Ong, A. Rashid Mohamed, S. Chai, Chem. Eng. J. 2023, 461, 141845.
10.1016/j.cej.2023.141845 Google Scholar
- 36N. Doebelin, R. Kleeberg, J. Appl. Crystallogr. 2015, 48, 1573.
- 37B. Seo, D. S. Baek, Y. J. Sa, S. H. Joo, CrystEngComm 2016, 18, 6083.
- 38H.o W. Man, C. S. Tsang, M. Meng, J. Mo, B. Huang, L. Lee, Y. C. Leung, C. E. Kenneth, Appl. Catal. B: Environ. 2019, 242, 186.
- 39H. S. Magar, R. Y. A. Hassan, A. Mulchandani, Sensors 2021, 21, 6578.
- 40D. Zhang, Y. Shi, J. Yin, J. Lai, ChemCatChem 2024, 16, 202301305.
- 41T. Shinagawa, A. T. Garcia-Esparza, K. Takanabe, Sci. Rep. 2015, 5, 13801.
- 42L. Kumar, B. Antil, A. Kumar, M. R. Das, S. Deka, ACS Appl. Mater. Interfaces 2022, 14, 5468.
- 43L. Kumar, B. Antil, A. Kumar, M. R. Das, O. López-Estrada, S. Siahrostami, S. Deka, ACS Appl. Mater. Interfaces 2023, 15, 54446.
- 44X. Zhu, C. Tang, H.-F. Wang, B.-Q. Li, Q. Zhang, C. Li, C. Yang, F. Wei, J. Mater. Chem. A. 2016, 4, 7245.
- 45S. A. Patil, A. C. Khot, V. D. Chavan, I. Rabani, D. Kim, J. Jung, H. Im, N. K. Shrestha, Chem. Eng. J. 2023, 480, 146545.
10.1016/j.cej.2023.146545 Google Scholar
- 46A. R. Jadhav, A. Kumar, J. Lee, T. Yang, S. Na, J. Lee, Y. Luo, X. Liu, Y. Hwang, Y. Liu, H. Lee, J. Mater. Chem. A. 2020, 8, 24501.
- 47T. Cui, J. Chi, K. Liu, J. Zhu, L. Guo, H. Mao, X. Liu, J. Lai, H. Guo, L. Wang, Appl. Catal. B: Environ. 2024, 357, 124269.
- 48Y. Xia, L. Guo, J. Zhu, J. Tang, Z. Li, X. Liu, J. Chi, L. Wang, Appl. Catal. B: Environ. 2024, 351, 123995.
- 49Y. Luo, P. Wang, G. Zhang, S. Wu, Z. Chen, H. Ranganathan, S. Sun, Z. Shi, Chem. Eng. J. 2023, 454, 140061.
- 50P. Wang, Y. Luo, G. Zhang, Z. Chen, H. Ranganathan, S. Sun, Z. Shi, Nano-Micro Lett. 2022, 14, 120.
- 51M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, J. Am. Chem. Soc. 2013, 135, 10274.
- 52J. Li, Z. Zhang, X. Zhang, L. Xu, S. Yuan, H. Wei, H. Chu, Dalton Trans. 2021, 50, 9690.
- 53X. Luo, P. Ji, P. Wang, R. Cheng, C. Ding, C. Lin, J. Zhang, J. He, Z. Shi, N. Li, S. Xiao, S. Mu, Adv. Energy Mater. 2020, 10, 1903891.
- 54Y. Duan, J. Y. Lee, S. Xi, Y. Sun, J. Ge, S. J. H. Ong, Y. Chen, S. Dou, F. Meng, C. Diao, A. C. Fisher, X. Wang, G. G. Scherer, A. Grimaud, Z. J. Xu, Angew. Chem., Int. Ed. 2021, 60, 7418.
- 55X. Bu, D. Yin, D. Chen, Q. Quan, Z. Yang, S. Yip, C. Wong, X. Wang, J. C. Ho, Small 2023, 19, 2304546.
- 56M. R. Kandel, U. N. Pan, P. P. Dhakal, R. B. Ghising, T. T. Nguyen, J. Zhao, N. H. Kim, J. H. Lee, Appl. Catal. B: Environ. 2023, 331, 122680.
- 57H. Zhang, X. Li, A. Hähnel, V. Naumann, C. Lin, S. Azimi, S. Schweizer, A. Wouter Maijenburg, R. B. Wehrspohn, Adv. Funct. Mater. 2018, 28, 1706847.
- 58A. Yadav, A. Kumar, S. K. Purkayastha, A. K. Guha, M. A. Ali, S. Deka, Int. J. Hydrog. Energy 2024, 53, 706.
- 59X. Yu, S. Xu, Z. Wang, X. Cheng, Y. Du, G. Chen, X. Sun, Q. Wu, Nanoscale 2021, 13, 11069.
- 60J. Kibsgaard, C. Tsai, K. Chan, J. D. Benck, J. K. Nørskov, F. Abild-Pedersen, T. F. Jaramillo, Energy Environ. Sci. 2015, 8, 3022.
- 61P. Xiao, M. A. Sk, L. Thia, X. Ge, R. J. Lim, J.-Y. Wang, K. H. Lim, X. Wang, Energy Environ. Sci. 2014, 7, 2624.
- 62H.-M. Zhang, L. Zuo, Y. Gao, J. Guo, C. Zhu, J. Xu, J. Sun, J. Mater. Sci. Technol. 2024, 173, 1.
- 63H.-M. Zhang, J. Li, Fuel 2024, 367, 131505.
- 64A. Kumar, S. K. Purkayastha, A. K. Guha, M. R. Das, S. Deka, ACS Catal. 2023, 13, 10615.
- 65J. Yang, Y. Xiao, Q. Zhao, G. Zhang, R. Wang, G. Teng, X. Chen, M. Weng, D. He, S. Mu, Y. Lin, F. Pan, Nano Energy 2019, 59, 443.
- 66J. Wang, J. Liu, B. Zhang, H. Wan, Z. Li, X. Ji, K. Xu, C. Chen, D. Zha, L. Miao, J. Jiang, Nano Energy 2017, 42, 98.
- 67Z.-Y. Yu, C.-C. Lang, M.-R. Gao, Y. Chen, Q.-Q. Fu, Y. Duan, S.-H. Yu, Energy Environ. Sci. 2018, 11, 1890.