Efficient Sorting of Semiconducting Single-Walled Carbon Nanotubes in Bio-Renewable Solvents Through Main-Chain Engineering of Conjugated Polymers
En-Jia Su
Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002 Taiwan
Search for more papers by this authorTing-Wei Chang
Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002 Taiwan
Search for more papers by this authorFong-Yi Lin
Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002 Taiwan
Search for more papers by this authorShi-Ting Lu
Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002 Taiwan
Search for more papers by this authorYi-Ting Tsai
Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002 Taiwan
Search for more papers by this authorShahid Khan
Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002 Taiwan
Search for more papers by this authorYu-Ching Weng
Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002 Taiwan
Search for more papers by this authorCorresponding Author
Chien-Chung Shih
Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002 Taiwan
E-mail: [email protected]
Search for more papers by this authorEn-Jia Su
Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002 Taiwan
Search for more papers by this authorTing-Wei Chang
Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002 Taiwan
Search for more papers by this authorFong-Yi Lin
Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002 Taiwan
Search for more papers by this authorShi-Ting Lu
Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002 Taiwan
Search for more papers by this authorYi-Ting Tsai
Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002 Taiwan
Search for more papers by this authorShahid Khan
Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002 Taiwan
Search for more papers by this authorYu-Ching Weng
Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002 Taiwan
Search for more papers by this authorCorresponding Author
Chien-Chung Shih
Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, 64002 Taiwan
E-mail: [email protected]
Search for more papers by this authorAbstract
Conjugated polymer sorting is recognized as an efficient and scalable method for the selective extraction of semiconducting single-walled carbon nanotubes (s-SWCNTs). However, this process typically requires the use of nonpolar and aromatic solvents as the dispersion medium, which are petroleum-based and carry significant production hazards. Moreover, there is still potential for improving the efficiency of batch purification. Here, this study presents fluorene-based conjugated polymer that integrates diamines containing ethylene glycol chains (ODA) as linkers within the main chain, to effectively extract s-SWCNTs in bio-renewable solvents. The introduction of ODA segments enhances the solubility in bio-renewable solvents, facilitating effective wrapping of s-SWCNTs in polar environments. Additionally, the ODA within the main chain enhances affinity to s-SWCNTs, thereby contributing to increased yields and purity. The polymer achieves a high sorting yield of 55% and a purity of 99.6% in dispersion of s-SWCNTs in 2-Methyltetrahydrofuran. Thin-film transistor arrays fabricated with sorted s-SWCNTs solution through slot-die coating exhibit average charge carrier mobilities of 20–23 cm2 V⁻¹ s⁻¹ and high on/off current ratios exceeding 105 together with high spatial uniformity. This study highlights the viability of bio-renewable solvents in the sorting process, paving the way for the eco-friendly approach to the purification of SWCNTs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202403651-sup-0001-SuppMat.docx4.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Li, G. Georges, ACS Nano 2023, 17, 19471.
- 2W. Zhou, X. Bai, E. Wang, S. Xie, Adv. Mater. 2009, 21, 4565.
- 3J. Lefebvre, J. Ding, Z. Li, P. Finnie, G. Lopinski, P. R. L. Malenfant, Acc. Chem. Res. 2017, 50, 2479.
- 4L.-M. Peng, Z. Zhang, S. Wang, Mater. Today 2014, 17, 433.
- 5M. D. Bishop, G. Hills, T. Srimani, C. Lau, D. Murphy, S. Fuller, J. Humes, A. Ratkovich, M. Nelson, M. M. Shulaker, Nat. Electron. 2020, 3, 492.
- 6T. W. Odom, J.-L. Huang, P. Kim, C. M. Lieber, J. Phys. Chem. B 2000, 104, 2794.
- 7C. Qiu, Z. Zhang, M. Xiao, Y. Yang, D. Zhong, L.-M. Peng, Science 2017, 355, 271.
- 8Y.-H. Tung, S.-W. Su, E.-J. Su, G.-H. Jiang, C.-C. Chen, S.-S. Yu, C.-C. Chiu, C.-C. Shih, Y.-C. Lin, Small Sci 2024, 4, 2300268.
- 9D. Zhong, C. Wu, Y. Jiang, Y. Yuan, M.-g. Kim, Y. Nishio, C.-C. Shih, W. Wang, J.-C. Lai, X. Ji, T. Z. Gao, Y.-X. Wang, C. Xu, Y. Zheng, Z. Yu, H. Gong, N. Matsuhisa, C. Zhao, Y. Lei, D. Liu, S. Zhang, Y. Ochiai, S. Liu, S. Wei, J. B. H. Tok, Z. Bao, Nature 2024, 627, 313.
- 10G. Hills, C. Lau, A. Wright, S. Fuller, M. D. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A. Amer, Y. Stein, D. Murphy, A. C. Arvind, M. M. Shulaker, Nature 2019, 572, 595.
- 11P. S. Kanhaiya, A. Yu, R. Netzer, W. Kemp, D. Doyle, M. M. Shulaker, ACS Nano 2021, 15, 17310.
- 12L.-M. Peng, Z. Zhang, C. Qiu, Nat. Electron. 2019, 2, 499.
- 13L. Ren, J. Zhou, Z. Pan, H. Li, L. Ding, Z. Zhang, L.-M. Peng, ACS Appl. Mater. Interfaces 2024, 16, 12813.
- 14G. Long, W. Jin, F. Xia, Y. Wang, T. Bai, X. Chen, X. Liang, L.-M. Peng, Y. Hu, Nat. Commun. 2022, 13, 6734.
- 15L. Xiang, Y. Wang, F. Xia, F. Liu, D. He, G. Long, X. Zeng, X. Liang, C. Jin, Y. Wang, A. Pan, L.-M. Peng, Y. Hu, Sci. Adv. 8, eabp8075.
- 16N. Arora, N. N. Sharma, Diam. Relat. Mater. 2014, 50, 135.
- 17I. Ka, V. Le Borgne, D. Ma, M. A. El Khakani, Adv. Mater. 2012, 24, 6289.
- 18P.-X. Hou, F. Zhang, L. Zhang, C. Liu, H.-M. Cheng, Adv. Funct. Mater 2022, 32, 2108541.
- 19S. Ghosh, S. M. Bachilo, R. B. Weisman, Nat. Nanotech. 2010, 5, 443.
- 20H. Liu, D. Nishide, T. Tanaka, H. Kataura, Nat. Commun. 2011, 2, 309.
- 21W. Gomulya, V. Derenskyi, E. Kozma, M. Pasini, M. A. Loi, Adv. Funct. Mater 2015, 25, 5858.
- 22W. Gomulya, G. D. Costanzo, E. J. F. de Carvalho, S. Z. Bisri, V. Derenskyi, M. Fritsch, N. Fröhlich, S. Allard, P. Gordiichuk, A. Herrmann, S. J. Marrink, M. C. dos Santos, U. Scherf, M. A. Loi, Adv. Mater. 2013, 25, 2948.
- 23S. K. Samanta, M. Fritsch, U. Scherf, W. Gomulya, S. Z. Bisri, M. A. Loi, Acc. Chem. Res. 2014, 47, 2446.
- 24A. S. R. Bati, L. Yu, M. Batmunkh, J. G. Shapter, Adv. Funct. Mater 2019, 29, 1902273.
- 25S. Qiu, K. Wu, B. Gao, L. Li, H. Jin, Q. Li, Adv. Mater. 2019, 31, 1800750.
- 26J. Ding, Z. Li, J. Lefebvre, F. Cheng, G. Dubey, S. Zou, P. Finnie, A. Hrdina, L. Scoles, G. P. Lopinski, C. T. Kingston, B. Simard, P. R. L. Malenfant, Nanoscale 2014, 6, 2328.
- 27D. Fong, A. Adronov, Macromolecules 2017, 50, 8002.
- 28H. Wang, Z. Bao, Nano Today 2015, 10, 737.
- 29T. Lei, I. Pochorovski, Z. Bao, Acc. Chem. Res. 2017, 50, 1096.
- 30N. A. Rice, W. J. Bodnaryk, B. Mirka, O. A. Melville, A. Adronov, B. H. Lessard, Adv. Electron. Mater. 2019, 5, 1800539.
- 31H. Wang, G. I. Koleilat, P. Liu, G. Jiménez-Osés, Y.-C. Lai, M. Vosgueritchian, Y. Fang, S. Park, K. N. Houk, Z. Bao, ACS Nano 2014, 8, 10606.
- 32D. Liu, P. Li, X. Yu, J. Gu, J. Han, S. Zhang, H. Li, H. Jin, S. Qiu, Q. Li, J. Zhang, Adv. Mater. 2017, 29, 1603565.
- 33J. Ouyang, J. Ding, J. Lefebvre, Z. Li, C. Guo, A. J. Kell, P. R. L. Malenfant, ACS Nano 2018, 12, 1910.
- 34T. Lei, X. Chen, G. Pitner, H. S. P. Wong, Z. Bao, J. Am. Chem. Soc. 2016, 138, 802.
- 35T. Lei, Y.-C. Lai, G. Hong, H. Wang, P. Hayoz, R. T. Weitz, C. Chen, H. Dai, Z. Bao, Small 2015, 11, 2946.
- 36Y. Luo, Y. Maimaiti, X. Maimaitiyiming, C. Xie, T. Pei, RSC Adv. 2021, 11, 2898.
- 37J. Gao, M. Kwak, J. Wildeman, A. Herrmann, M. A. Loi, Carbon 2011, 49, 333.
- 38H. Wang, B. Hsieh, G. Jiménez-Osés, P. Liu, C. J. Tassone, Y. Diao, T. Lei, K. N. Houk, Z. Bao, Small 2015, 11, 126.
- 39J. Ouyang, H. Shin, P. Finnie, J. Ding, C. Guo, Z. Li, Y. Chen, L. Wei, A. J. Wu, S. Moisa, F. Lapointe, P. R. L. Malenfant, ACS Appl Polym. Mater. 2022, 4, 6239.
- 40F. Lemasson, N. Berton, J. Tittmann, F. Hennrich, M. M. Kappes, M. Mayor, Macromolecules 2012, 45, 713.
- 41B. Mirka, D. Fong, N. A. Rice, O. A. Melville, A. Adronov, B. H. Lessard, Chem. Mater. 2019, 31, 2863.
- 42W. Talsma, G. Ye, Y. Liu, H. Duim, S. Dijkstra, K. Tran, J. Qu, J. Song, R. C. Chiechi, M. A. Loi, ACS Appl. Mater. Interfaces 2022, 14, 38056.
- 43G. Ye, W. Talsma, K. Tran, Y. Liu, S. Dijkstra, J. Cao, J. Chen, J. Qu, J. Song, M. A. Loi, R. C. Chiechi, Macromolecules 2022, 55, 1386.
- 44B. C. Schroeder, Y.-C. Chiu, X. Gu, Y. Zhou, J. Xu, J. Lopez, C. Lu, M. F. Toney, Z. Bao, Adv. Electron. Mater. 2016, 2, 1600104.
- 45G.-J. N. Wang, F. Molina-Lopez, H. Zhang, J. Xu, H.-C. Wu, J. Lopez, L. Shaw, J. Mun, Q. Zhang, S. Wang, A. Ehrlich, Z. Bao, Macromolecules 2018, 51, 4976.
- 46J. Panidi, E. Mazzolini, F. Eisner, Y. Fu, F. Furlan, Z. Qiao, M. Rimmele, Z. Li, X. Lu, J. Nelson, J. R. Durrant, M. Heeney, N. Gasparini, ACS Energy Lett. 2023, 8, 3038.
- 47G. S. Lee, H.-j. Kwon, T. K. An, Y.-H. Kim, Chem. Commun. 2023, 59, 4995.
- 48G.-S. Song, Y.-J. Heo, J. J. Baek, H. Lee, G. Y. Bae, K. H. Choi, W.-G. Koh, G. Shin, J. Polym. Sci. 2021, 59, 340.
- 49D. Fong, A. Adronov, Chem. Sci. 2017, 8, 7292.
- 50H. Wang, K. Goh, R. Xue, D. Yu, W. Jiang, R. Lau, Y. Chen, Chem. Commun. 2013, 49, 2031.
- 51Y. Iizumi, H. Suzuki, M. Tange, T. Okazaki, Nanoscale 2014, 6, 13910.
- 52R. B. Weisman, S. M. Bachilo, Nano Lett. 2003, 3, 1235.
- 53M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindahl, SoftwareX 2015, 1–2, 19.
10.1016/j.softx.2015.06.001 Google Scholar
- 54W. Gao, W. Xu, J. Ye, T. Liu, J. Wang, H. Tan, Y. Lin, M. Tange, D. Sun, L. Wu, T. Okazaki, Y. Yang, Z. Zhang, J. Zhao, Z. Cui, C.-Q. Ma, Adv. Funct. Mater 2017, 27, 1703938.
- 55F. Liu, X. Chen, H. Liu, J. Zhao, M. Xi, H. Xiao, T. Lu, Y. Cao, Y. Li, L. Peng, X. Liang, Nano Res. 2021, 14, 4281.
- 56A. Chortos, I. Pochorovski, P. Lin, G. Pitner, X. Yan, T. Z. Gao, J. W. F. To, T. Lei, J. W. Will III, H. S. P. Wong, Z. Bao, ACS Nano 2017, 11, 5660.
- 57T. Z. Gao, Z. Sun, X. Yan, H.-C. Wu, H. Yan, Z. Bao, Small 2020, 16, 2000923.
- 58I. Pochorovski, H. Wang, J. I. Feldblyum, X. Zhang, A. L. Antaris, Z. Bao, J. Am. Chem. Soc. 2015, 137, 4328.