Interacted Ternary Component Ensuring High-Security Eutectic Electrolyte for High Performance Sodium-Metal Batteries
Fan Feng
School of Material Science and Engineering, China University of Petroleum Huadong-Qingdao Campus, Qingdao, 266580 China
Search for more papers by this authorCorresponding Author
Zheng Liu
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorYingchun Yan
School of Material Science and Engineering, China University of Petroleum Huadong-Qingdao Campus, Qingdao, 266580 China
Search for more papers by this authorMin Gong
School of Material Science and Engineering, China University of Petroleum Huadong-Qingdao Campus, Qingdao, 266580 China
Search for more papers by this authorGuanwen Wang
School of Material Science and Engineering, China University of Petroleum Huadong-Qingdao Campus, Qingdao, 266580 China
Search for more papers by this authorChunlei Chi
School of Material Science and Engineering, China University of Petroleum Huadong-Qingdao Campus, Qingdao, 266580 China
Search for more papers by this authorBin Qi
School of Material Science and Engineering, China University of Petroleum Huadong-Qingdao Campus, Qingdao, 266580 China
Search for more papers by this authorChao Huangfu
School of Material Science and Engineering, China University of Petroleum Huadong-Qingdao Campus, Qingdao, 266580 China
Search for more papers by this authorXinhou Yang
School of Material Science and Engineering, China University of Petroleum Huadong-Qingdao Campus, Qingdao, 266580 China
Search for more papers by this authorKe Cao
School of Material Science and Engineering, China University of Petroleum Huadong-Qingdao Campus, Qingdao, 266580 China
Search for more papers by this authorFanshuai Meng
School of Material Science and Engineering, China University of Petroleum Huadong-Qingdao Campus, Qingdao, 266580 China
Search for more papers by this authorCorresponding Author
Tong Wei
School of Material Science and Engineering, China University of Petroleum Huadong-Qingdao Campus, Qingdao, 266580 China
Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhuangjun Fan
School of Material Science and Engineering, China University of Petroleum Huadong-Qingdao Campus, Qingdao, 266580 China
Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorFan Feng
School of Material Science and Engineering, China University of Petroleum Huadong-Qingdao Campus, Qingdao, 266580 China
Search for more papers by this authorCorresponding Author
Zheng Liu
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorYingchun Yan
School of Material Science and Engineering, China University of Petroleum Huadong-Qingdao Campus, Qingdao, 266580 China
Search for more papers by this authorMin Gong
School of Material Science and Engineering, China University of Petroleum Huadong-Qingdao Campus, Qingdao, 266580 China
Search for more papers by this authorGuanwen Wang
School of Material Science and Engineering, China University of Petroleum Huadong-Qingdao Campus, Qingdao, 266580 China
Search for more papers by this authorChunlei Chi
School of Material Science and Engineering, China University of Petroleum Huadong-Qingdao Campus, Qingdao, 266580 China
Search for more papers by this authorBin Qi
School of Material Science and Engineering, China University of Petroleum Huadong-Qingdao Campus, Qingdao, 266580 China
Search for more papers by this authorChao Huangfu
School of Material Science and Engineering, China University of Petroleum Huadong-Qingdao Campus, Qingdao, 266580 China
Search for more papers by this authorXinhou Yang
School of Material Science and Engineering, China University of Petroleum Huadong-Qingdao Campus, Qingdao, 266580 China
Search for more papers by this authorKe Cao
School of Material Science and Engineering, China University of Petroleum Huadong-Qingdao Campus, Qingdao, 266580 China
Search for more papers by this authorFanshuai Meng
School of Material Science and Engineering, China University of Petroleum Huadong-Qingdao Campus, Qingdao, 266580 China
Search for more papers by this authorCorresponding Author
Tong Wei
School of Material Science and Engineering, China University of Petroleum Huadong-Qingdao Campus, Qingdao, 266580 China
Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhuangjun Fan
School of Material Science and Engineering, China University of Petroleum Huadong-Qingdao Campus, Qingdao, 266580 China
Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Due to the intrinsic flame-retardant, eutectic electrolytes are considered a promising candidate for sodium-metal batteries (SMBs). However, the high viscosity and ruinous side reaction with Na metal anode greatly hinder their further development. Herein, based on the Lewis acid-base theory, a new eutectic electrolyte (EE) composed of sodium bis(trifluoromethanesulfonyl)imide (NaTFSI), succinonitrile (SN), and fluoroethylene carbonate (FEC) is reported. As a strong Lewis base, the ─C≡N group of SN can effectively weaken the interaction between Na+ and TFSI−, achieving the dynamic equilibrium and reducing the viscosity of EE. Moreover, the FEC additive shows a low energy level to construct thicker and denser solid electrolyte interphase (SEI) on the Na metal surface, which can effectively eliminate the side reaction between EE and Na metal anode. Therefore, EE-1:6 + 5% FEC shows high ionic conductivity (2.62 mS cm−1) and ultra-high transference number of Na+ (0.96). The Na||Na symmetric cell achieves stable Na plating/stripping for 1100 h and Na||Na3V2(PO4)3/C cell shows superior long-term cycling stability over 2000 cycles (99.1% retention) at 5 C. More importantly, the Na||NVP/C pouch cell demonstrates good cycling performance of 102.1 mAh g−1 after 135 cycles at 0.5 C with an average coulombic efficiency of 99.63%.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202403275-sup-0001-SuppMat.docx7.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) S. K. Vineeth, C. B. Soni, C. S. Sungjemmenla, Y. Yamauchi, M. Han, V. Kumar, J. Energy Storage 2023, 73, 108780; b) S. K. Vineeth, C. B. Soni, Y. Sun, V. Kumar, Z. W. Seh, Trends Chem. 2022, 4, 48; c) S. K. Vineeth, M. Tebyetekerwa, H. Liu, C. B. Soni, X. S. Z. Sungjemmenla, V. Kumar, Mater. Adv. 2022, 3, 6415; d) Q. Xia, W. Li, Z. Miao, S. Chou, H. Liu, Nano Res. 2017, 10, 4055; e) G.-L. Xu, R. Amine, A. Abouimrane, H. Che, M. Dahbi, Z.-F. Ma, I. Saadoune, J. Alami, W. L. Mattis, F. Pan, Z. Chen, K. Amine, Adv. Energy Mater. 2018, 8, 1702403; f) B. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928.
- 2a) C. Zhao, L. Liu, X. Qi, Y. Lu, F. Wu, J. Zhao, Y. Yu, Y.-S. Hu, L. Chen, Adv. Energy Mater. 2018, 8, 1703012; b) R. Cao, K. Mishra, X. Li, J. Qian, M. H. Engelhard, M. E. Bowden, K. S. Han, K. T. Mueller, W. A. Henderson, J.-G. Zhang, Nano Energy 2016, 30, 825; c) T. Liu, H. Wu, X. Du, J. Wang, Z. Chen, H. Wang, J. Sun, J. Zhang, J. Niu, L. Yao, J. Zhao, G. Cui, ACS Appl. Mater. Interfaces 2022, 14, 33041.
- 3a) J. Yu, W. Zhai, C. Zhang, C. Wu, R. Wei, S. Chen, Y. He, Q. Hu, Y. Yu, W. Liu, ACS Energy Lett. 2023, 8, 1468; b) T. Famprikis, P. Canepa, J. A. Dawson, M. S. Islam, C. Masquelier, Nat. Mater. 2019, 18, 1278; c) J. Liu, H. Yuan, H. Liu, C.-Z. Zhao, Y. Lu, X.-B. Cheng, J.-Q. Huang, Q. Zhang, Adv. Energy Mater. 2022, 12, 2100748.
- 4a) K. Matsumoto, J. Hwang, S. Kaushik, C.-Y. Chen, R. Hagiwara, Energy Environ. Sci. 2019, 12, 3247; b) X. Peng, Y. Lin, Y. Wang, Y. Li, T. Zhao, Nano Energy 2022, 96, 107102; c) S. Chen, J. Zheng, D. Mei, K. S. Han, M. H. Engelhard, W. Zhao, W. Xu, J. Liu, J.-G. Zhang, Adv. Mater. 2018, 30, 1706102; d) M. Becker, D. Rentsch, D. Reber, A. Aribia, C. Battaglia, R.-S. Kühnel, Angew. Chem., Int. Ed. 2021, 60, 14100.
- 5a) E. L. Smith, A. P. Abbott, K. S. Ryder, Chem. Rev. 2014, 114, 11060; b) A. Boisset, S. Menne, J. Jacquemin, A. Balducci, M. Anouti, Phys. Chem. Chem. Phys. 2013, 15, 20054.
- 6a) J. Song, Y. Si, W. Guo, D. Wang, Y. Fu, Angew. Chem., Int. Ed. 2021, 60, 9881; b) H. Su, Z. Chen, M. Li, P. Bai, Y. Li, X. Ji, Z. Liu, J. Sun, J. Ding, M. Yang, X. Yao, C. Mao, Y. Xu, Adv. Mater. 2023, 35, 2301171.
- 7a) P.-J. Alarco, Y. Abu-Lebdeh, A. Abouimrane, M. Armand, Nat. Mater. 2004, 3, 476; b) D. Zhou, Y.-B. He, R. Liu, M. Liu, H. Du, B. Li, Q. Cai, Q.-H. Yang, F. Kang, Adv. Energy Mater. 2015, 5, 1500353.
- 8Z. Hu, F. Xian, Z. Guo, C. Lu, X. Du, X. Cheng, S. Zhang, S. Dong, G. Cui, L. Chen, Chem. Mater. 2020, 32, 3405.
- 9N. von Aspern, G.-V. Röschenthaler, M. Winter, I. Cekic-Laskovic, Angew. Chem., Int. Ed. 2019, 58, 15978.
- 10a) C. Shen, S. Wang, Y. Jin, W.-Q. Han, ACS Appl. Mater. Interfaces 2015, 7, 25441; b) C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Björefors, K. Edström, T. Gustafsson, Chem. Mater. 2015, 27, 2591; c) Y. Wang, Z. Li, Y. Hou, Z. Hao, Q. Zhang, Y. Ni, Y. Lu, Z. Yan, K. Zhang, Q. Zhao, F. Li, J. Chen, Chem. Soc. Rev. 2023, 52, 2713.
- 11R. K. Ibrahim, M. Hayyan, M. A. AlSaadi, S. Ibrahim, A. Hayyan, M. A. Hashim, J. Mol. Liq. 2019, 276, 794.
- 12K. Müller-Dethlefs, P. Hobza, Chem. Rev. 2000, 100, 143.
- 13a) H. Liang, H. Li, Z. Wang, F. Wu, L. Chen, X. Huang, J. Phys. Chem. B 2001, 105, 9966; b) H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju, Z. Chen, Z. Hu, D. Yan, X. Zhou, G. Cui, Nat. Commun. 2019, 10, 5374.
- 14a) Q. Dou, S. Lei, D.-W. Wang, Q. Zhang, D. Xiao, H. Guo, A. Wang, H. Yang, Y. Li, S. Shi, X. Yan, Energy Environ. Sci. 2018, 11, 3212; b) Y. Dai, K. Wang, B. Zhou, M. Du, R. Liu, B. Liu, B. Zou, J. Phys. Chem. C 2016, 120, 5340.
- 15a) Q. Hou, P. Li, Y. Qi, Y. Wang, M. Huang, C. Shen, H. Xiang, N. Li, K. Xie, ACS Energy Lett. 2023, 8, 3649; b) Z. Tian, Y. Zou, G. Liu, Y. Wang, J. Yin, J. Ming, H. N. Alshareef, Adv. Sci. 2022, 9, 2201207; c) K. Takada, Y. Yamada, A. Yamada, ACS Appl. Mater. Interfaces 2019, 11, 35770.
- 16K. Song, X. Wang, Z. Xie, Z. Zhao, Z. Fang, Z. Zhang, J. Luo, P. Yan, Z. Peng, W. Chen, Angew. Chem., Int. Ed. 2023, 62, 202216450.
- 17S. Yang, X. He, T. Hu, Y. He, S. Lv, Z. Ji, Z. Zhu, X. Fu, W. Yang, Y. Wang, Adv. Funct. Mater. 2023, 33, 2304727.
- 18a) J. Zhang, H. Wu, X. Du, H. Zhang, L. Huang, F. Sun, T. Liu, S. Tian, L. Zhou, S. Hu, Z. Yuan, B. Zhang, J. Zhang, G. Cui, Adv. Energy Mater. 2023, 13, 2202529; b) H. Wang, J. Song, K. Zhang, Q. Fang, Y. Zuo, T. Yang, Y. Yang, C. Gao, X. Wang, Q. Pang, D. Xia, Energy Environ. Sci. 2022, 15, 5149; c) P. Li, H. Zhang, J. Lu, G. Li, Angew. Chem., Int. Ed. 2023, 62, 202216312; d) G. Zhang, J. Shu, L. Xu, X. Cai, W. Zou, L. Du, S. Hu, L. Mai, Nano-Micro Lett. 2021, 13, 105; e) G. Zhao, L. Xu, J. Jiang, Z. Mei, Q. An, P. Lv, X. Yang, H. Guo, X. Sun, Nano Energy 2022, 92, 106756; f) X. Pei, Y. Li, T. Ou, X. Liang, Y. Yang, E. Jia, Y. Tan, S. Guo, Angew. Chem., Int. Ed. 2022, 61, 202205075.
- 19a) J. Zheng, Y. Sun, W. Li, X. Feng, W. Chen, Y. Zhao, ACS Appl. Mater. Interfaces 2021, 13, 25024; b) Y. Jin, P. M. L. Le, P. Gao, Y. Xu, B. Xiao, M. H. Engelhard, X. Cao, T. D. Vo, J. Hu, L. Zhong, B. E. Matthews, R. Yi, C. Wang, X. Li, J. Liu, J.-G. Zhang, Nat. Energy 2022, 7, 718; c) D. Lu, J. Tao, P. Yan, W. A. Henderson, Q. Li, Y. Shao, M. L. Helm, O. Borodin, G. L. Graff, B. Polzin, C.-M. Wang, M. Engelhard, J.-G. Zhang, J. J. De Yoreo, J. Liu, J. Xiao, Nano Lett. 2017, 17, 1602.
- 20H. Yildirim, A. Kinaci, M. K. Y. Chan, J. P. Greeley, ACS Appl. Mater. Interfaces 2015, 7, 18985.
- 21J. Pan, Q. Zhang, X. Xiao, Y.-T. Cheng, Y. Qi, ACS Appl. Mater. Interfaces 2016, 8, 5687.
- 22J. He, A. Bhargav, W. Shin, A. Manthiram, J. Am. Chem. Soc. 2021, 143, 20241.
- 23Y. Yan, Z. Liu, T. Wan, W. Li, Z. Qiu, C. Chi, C. Huangfu, G. Wang, B. Qi, Y. Yan, T. Wei, Z. Fan, Nat. Commun. 2023, 14, 3066.
- 24W. Ren, Z. Zheng, C. Xu, C. Niu, Q. Wei, Q. An, K. Zhao, M. Yan, M. Qin, L. Mai, Nano Energy 2016, 25, 145.
- 25J. Hu, C. Lai, K. Chen, Q. Wu, Y. Gu, C. Wu, C. Li, Nat. Commun. 2022, 13, 7914.
- 26J. Chen, Z. Yang, X. Xu, Y. Qiao, Z. Zhou, Z. Hao, X. Chen, Y. Liu, X. Wu, X. Zhou, L. Li, S.-L. Chou, Adv. Mater. 2024, https://doi.org/10.1002/adma.202400169.
10.1002/adma.202400169 Google Scholar