Unveiling Mechanistic Insight into Accelerating Oxygen Molecule Activation by Oxygen Defects in Co3O4-x/g-C3N4 p–n Heterojunction for Efficient Photo-Assisted Uranium Extraction from Seawater
Enmin Hu
State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010 P. R. China
Search for more papers by this authorQian Liu
State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010 P. R. China
Search for more papers by this authorZishu Qian
State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010 P. R. China
Search for more papers by this authorQian Zhong
State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010 P. R. China
Search for more papers by this authorJunhui He
Department of Materials Engineering, Sichuan College of Architectural Technology, Deyang, Sichuan, 618000 P. R. China
Search for more papers by this authorShicheng Xu
State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010 P. R. China
Search for more papers by this authorTianming Lu
State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010 P. R. China
Search for more papers by this authorJin Li
State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010 P. R. China
Search for more papers by this authorCorresponding Author
Tao Chen
State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Wenkun Zhu
State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorEnmin Hu
State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010 P. R. China
Search for more papers by this authorQian Liu
State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010 P. R. China
Search for more papers by this authorZishu Qian
State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010 P. R. China
Search for more papers by this authorQian Zhong
State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010 P. R. China
Search for more papers by this authorJunhui He
Department of Materials Engineering, Sichuan College of Architectural Technology, Deyang, Sichuan, 618000 P. R. China
Search for more papers by this authorShicheng Xu
State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010 P. R. China
Search for more papers by this authorTianming Lu
State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010 P. R. China
Search for more papers by this authorJin Li
State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010 P. R. China
Search for more papers by this authorCorresponding Author
Tao Chen
State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Wenkun Zhu
State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, School of National Defense & Nuclear Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan, 621010 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Photo-assisted uranium extraction from seawater (UES) is regarded as an efficient technique for uranium resource recovery, yet it currently faces many challenges, such as issues like biofouling resistance, low charge separation efficiency, slow carrier transfer, and a lack of active sites. Based on addressing the above challenges, a novel oxygen-deficient Co3O4-x/g-C3N4 p–n heterojunction is developed for efficient photo-assisted uranium extraction from seawater. Relying on the defect-coupling heterojunction synergistic effect, the redistribution of molecular charge density formed the built-in electric field as revealed by DFT calculations, significantly enhancing the separation efficiency of carriers and accelerating their migration rate. Notably, oxygen vacancies served as capture sites for oxygen, effectively promoting the generation of reactive oxygen species (ROS), thereby significantly improving the photo-assisted uranium extraction performance and antibacterial activity. Thus, under simulated sunlight irradiation with no sacrificial reagent added, Co3O4-x/g-C3N4 extracted a high uranium extraction amount of 1.08 mg g−1 from 25 L of natural seawater after 7 days, which is superior to most reported carbon nitride-based photocatalysts. This study elaborates on the important role of surface defects and inerface engineering strategies in enhancing photocatalytic performance, providing a new approach to the development and design of uranium extraction material from seawater.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202403105-sup-0001-SuppMat.docx13.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) D. King, Science. 2017, 355, 111; b) E. Kintisch, Science. 2011, 331, 524; c) F. Gralla, D. J. Abson, A. P. Møller, D. J. Lang, H. von Wehrden, Renewable Sustainable Energy Rev. 2017, 70, 1251.
- 2D. S. Sholl, R. P. Lively, Nature. 2016, 532, 435.
- 3J. Kim, C. Tsouris, R. T. Mayes, Y. Oyola, T. Saito, C. J. Janke, S. Dai, E. Schneider, D. Sachde, Sep. Sci. Technol. 2013, 48, 367.
- 4A. I. Wiechert, S. Yiacoumi, C. Tsouris, Nat. Sustainability. 2022, 5, 13.
- 5Y. Song, X. Ma, H. Tan, Z. Liu, C. Liu, C. Shen, P. Yang, S. Li, Nano Res. 2023, 16, 10451.
- 6C. W. Abney, R. T. Mayes, T. Saito, S. Dai, Chem. Rev. 2017, 117, 13935.
- 7a) S. Mollick, S. Saurabh, Y. D. More, S. Fajal, M. M. Shirolkar, W. Mandal, S. K. Ghosh, Energy Environ. Sci. 2022, 15, 3462; b) Z. Wang, R. Ma, Q. Meng, Y. Yang, X. Ma, X. Ruan, Y. Yuan, G. Zhu, J. Am. Chem. Soc. 2021, 143, 14523; c) D. Wang, J. Song, J. Wen, Y. Yuan, Z. Liu, S. Lin, H. Wang, H. Wang, S. Zhao, X. Zhao, M. Fang, M. Lei, B. Li, N. Wang, X. Wang, H. Wu, Adv. Energy Mater. 2018, 8, 1802607.
- 8a) T. Wu, Z. Wang, Y. Lu, S. Liu, H. Li, G. Ye, J. Chen, Adv. Sci. 2021, 8, 2002717; b) L. Yang, H. Xiao, Y. Qian, X. Zhao, X.-Y. Kong, P. Liu, W. Xin, L. Fu, L. Jiang, L. Wen, Nat. Sustainability. 2021, 5, 71.
- 9a) M.-L. Feng, D. Sarma, X.-H. Qi, K.-Z. Du, X.-Y. Huang, M. G. Kanatzidis, J. Am. Chem. Soc. 2016, 138, 12578; b) T. Vitova, R. Faizova, J. I. Amaro-Estrada, L. Maron, T. Pruessmann, T. Neill, A. Beck, B. Schacherl, F. F. Tirani, M. Mazzanti, Chem. Sci. 2022, 13, 11038.
- 10C. Liu, P.-C. Hsu, J. Xie, J. Zhao, T. Wu, H. Wang, W. Liu, J. Zhang, S. Chu, Y. Cui, Nat. Energy. 2017, 2, 17007.
- 11a) Z. Chen, J. Wang, M. Hao, Y. Xie, X. Liu, H. Yang, G. I. N. Waterhouse, X. Wang, S. Ma, Nat. Commun. 2023, 14, 1106; b) H. Yang, M. Hao, Y. Xie, X. Liu, Y. Liu, Z. Chen, X. Wang, G. I. N. Waterhouse, S. Ma, Angew. Chem., Int. Ed. 2023, 62, 202303129.
- 12T. Chen, K. Yu, C. Dong, X. Yuan, X. Gong, J. Lian, X. Cao, M. Li, L. Zhou, B. Hu, R. He, W. Zhu, X. Wang, Coord. Chem. Rev. 2022, 467, 214615.
- 13a) P. Jiang, K. Yu, H. Yuan, R. He, M. Sun, F. Tao, L. Wang, W. Zhu, J. Mater. Chem. A. 2021, 9, 9809; b) W. Wang, Q. Luo, L. Li, Y. Wang, X. Huo, S. Chen, X. Du, N. Wang, Adv. Funct. Mater. 2023, 33, 2302913; c) H. Gao, J. Xu, J. Zhou, S. Zhang, R. Zhou, J. Colloid Interface Sci. 2020, 570, 125; d) J. Yu, H. Zhang, Q. Liu, J. Yu, J. Zhu, R. Li, P. Liu, Y. Li, J. Wang, Chem. Eng. J. 2023, 471, 144705.
- 14a) H. Li, F. Zhai, D. Gui, X. Wang, C. Wu, D. Zhang, X. Dai, H. Deng, X. Su, J. Diwu, Z. Lin, Z. Chai, S. Wang, Appl. Catal., B. 2019, 254, 47; b) B. Tu, K. Yu, D. Fu, L. Zhou, R. Wang, X. Jiang, H. Liu, X. Cao, X. Gong, R. He, Y. Tang, T. Chen, W. Zhu, Appl. Catal., B. 2023, 337, 122965; c) L. Zhang, Y. Yang, N. Zhao, S. Liu, Z. Wang, X. Wang, Y. Lu, J. Mater. Chem. A. 2024, 12, 9651; d) L. Zhang, Y.-T. Luo, S.-J. Xiao, J.-Q. Fan, Q.-G. Tan, C. Sun, A.-M. Song, R.-P. Liang, J.-D. Qiu, Chem. Commun. 2024, 60, 3583.
- 15a) X. H. Xiong, Z. W. Yu, L. L. Gong, Y. Tao, Z. Gao, L. Wang, W. H. Yin, L. X. Yang, F. Luo, Adv. Sci. 2019, 6, 1900547; b) Z. Gao, Y. Lai, Y. Tao, L. Xiao, Z. Li, L. Zhang, L. Sun, F. Luo, Appl. Catal., B. 2021, 297, 120485.
- 16a) Q. Sun, B. Aguila, J. Perman, A. S. Ivanov, V. S. Bryantsev, L. D. Earl, C. W. Abney, L. Wojtas, S. Ma, Nat. Commun. 2018, 9, 1644; b) S. Kushwaha, M. Mane, S. Ravindranathan, A. Das, ACS Sens. 2020, 5, 3254.
- 17a) F. Yu, Z. Zhu, S. Wang, Y. Peng, Z. Xu, Y. Tao, J. Xiong, Q. Fan, F. Luo, Chem. Eng. J. 2021, 412, 127558; b) F. Yu, F. Song, R. Wang, M. Xu, F. Luo, Polym. Chem. 2021, 12, 867.
- 18a) H. Wang, H. Guo, N. Zhang, Z. Chen, B. Hu, X. Wang, Environ. Sci. Technol. 2019, 53, 6454; b) K. Yu, Y. Li, X. Cao, R. Wang, L. Zhou, L Wu, N He, J. Lei, D. Fu, T. Chen, R. He, W. Zhu, J. Hazard, Mater 2023, 460, 132356.
- 19X.-H. Jiang, Q.-J. Xing, X.-B. Luo, F. Li, J.-P. Zou, S.-S. Liu, X. Li, X.-K. Wang, Appl. Catal., B 2018, 228, 29.
- 20S. Li, X. Yang, Z. Cui, Y. Xu, Z. Niu, P. Li, D. Pan, W. Wu, Appl. Catal., B. 2021, 298, 120625.
- 21F. He, Q. Xiao, Y. Chen, H. Wang, X. Wang, Appl. Catal., B. 2024, 343, 123525.
- 22E. Hu, Q. Chen, Q. Gao, X. Fan, X. Luo, Y. Wei, G. Wu, H. Deng, S. Xu, P. Wang, L. Liu, R. He, X. Chen, W. Zhu, Y. Zhu, Adv. Funct. Mater. 2024, 34, 2312215.
- 23Y. Dong, K. He, L. Yin, A. Zhang, Nanotechnology. 2007, 18, 435602.
- 24J. Xu, W. Li, W. Liu, J. Jing, K. Zhang, L. Liu, J. Yang, E. Zhu, J. Li, Y. Zhu, Angew. Chem., Int. Ed. 2022, 61, 202212243.
- 25B. Li, H.-Y. Xu, Y.-L. Liu, Y. Liu, Y. Xu, S.-Q. Zhang, Chem. Eng. J. 2023, 467, 143396.
- 26H. Dong, X. Zhang, J. Li, P. Zhou, S. Yu, N. Song, C. Liu, G. Che, C. Li, Appl. Catal., B. 2020, 263, 118270.
- 27X. Zhang, D. Wu, X. Liu, Y. Qiu, Z. Liu, H. Xie, J. Duan, B. Hou, Appl. Catal., B. 2023, 330, 122594.
- 28L. Bai, H. Huang, S. Zhang, L. Hao, Z. Zhang, H. Li, L. Sun, L. Guo, H. Huang, Y. Zhang, Adv. Sci. 2020, 7, 2001939.
- 29a) Y. H. Li, L. Shi, Y. Mao, Y. Zhang, H. Q. Wang, Chem. Eng. J. 2022, 446, 136872; b) H. Ming, P. Zhang, Y. Yang, Y. Zou, C. Yang, Y. Hou, K. Ding, J. Zhang, X. Wang, Appl. Catal., B. 2022, 311, 121341.
- 30X. Zou, Y. Dong, J. Ke, H. Ge, D. Chen, H. Sun, Y. Cui, Chem. Eng. J. 2020, 400, 125919.
- 31J. Zhao, C. Li, Q. Yu, Y. Zhu, X. Liu, S. Li, C. Liang, Y. Zhang, L. Huang, K. Yang, Z. Zhang, Y. Zhai, J. Hazard. Mater. 2023, 452, 131249.
- 32S. Bai, W. Jing, G. He, C. Liao, F. Wang, Y. Liu, L. Guo, ACS Nano. 2023, 17, 10976.
- 33Z. Zhang, J. T. Yates, Chem. Rev. 2012, 112, 5520.
- 34P. He, L. Zhang, L. Wu, S. Xiao, X. Ren, R. He, X. Yang, R. Liu, T. Duan, Appl. Catal., B. 2023, 322, 122087.
- 35J. Wang, P. Li, Y. Wang, Z. Liu, D. Wang, J. Liang, Q. Fan, Adv. Sci. 2023, 10, 2205542.
- 36J. Xu, W. Li, W. Liu, J. Jing, K. Zhang, L. Liu, J. Yang, E. Zhu, J. Li, Y. Zhu, Angew. Chem., Int. Ed. 2022, 61, 202212243.
- 37X. Gong, L. Tang, J. Zou, Z. Guo, Y. Li, J. Lei, H. Liu, M. Liu, L. Zhou, P. Huang, H. Ruan, Y. Lu, W. Zhu, R. He, J. Hazard. Mater. 2022, 423, 126935.
- 38Y. Nie, Y.a. Zhu, X. Lu, J. Qiu, B. Wang, Z. Xie, Z. Le, Chem. Eng. J. 2023, 477, 146908.
- 39W. R. Cui, F. F. Li, R. H. Xu, C. R. Zhang, X. R. Chen, R. H. Yan, R. P. Liang, J. D. Qiu, Angew. Chem., Int. Ed. 2020, 59, 17684.
- 40T. Li, X. Lin, Z. Zhang, L. Yang, Y. Qian, L. Fu, S. Zhou, W. Chen, Q. Wang, X. Li, X.-Y. Kong, H. Xiao, L. Jiang, L. Wen, Adv. Funct. Mater. 2023, 33, 2212819.
- 41W.-R. Cui, C.-R. Zhang, R.-H. Xu, X.-R. Chen, W. Jiang, Y.-J. Li, R.-P. Liang, L. Zhang, J.-D. Qiu, Appl. Catal., B. 2021, 294, 120250.
- 42a) Y. Yuan, B. Niu, Q. Yu, X. Guo, Z. Guo, J. Wen, T. Liu, H. Zhang, N. Wang, Angew. Chem., Int. Ed. 2019, 59, 1220; b) W. Sun, L. Feng, J. Zhang, K. Lin, H. Wang, B. Yan, T. Feng, M. Cao, T. Liu, Y. Yuan, N. Wang, Adv. Sci. 2022, 9, 2105008.
- 43W.-R. Cui, C.-R. Zhang, R.-P. Liang, J.-D. Qiu, J. Mater. Chem. A. 2021, 9, 25611.