Magnetic Tunability via Control of Crystallinity and Size in Polycrystalline Iron Oxide Nanoparticles
Minh Dang Nguyen
Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorLiangzi Deng
Department of Physics and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorJong Moon Lee
Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorKarla M. Resendez
Department of Biomedical Engineering and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorMaggie Fuller
Department of Physics and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorSupawitch Hoijang
Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003 USA
Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
Search for more papers by this authorFrancisco Robles-Hernandez
College of Engineering Technology, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorChing-Wu Chu
Department of Physics and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorDmitri Litvinov
Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorViktor G. Hadjiev
Department of Mechanical Engineering and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorShoujun Xu
Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorManh-Huong Phan
Department of Physics, University of South Florida, Tampa, FL, 33620 USA
Search for more papers by this authorCorresponding Author
T. Randall Lee
Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003 USA
E-mail: [email protected]
Search for more papers by this authorMinh Dang Nguyen
Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorLiangzi Deng
Department of Physics and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorJong Moon Lee
Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorKarla M. Resendez
Department of Biomedical Engineering and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorMaggie Fuller
Department of Physics and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorSupawitch Hoijang
Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003 USA
Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
Search for more papers by this authorFrancisco Robles-Hernandez
College of Engineering Technology, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorChing-Wu Chu
Department of Physics and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorDmitri Litvinov
Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorViktor G. Hadjiev
Department of Mechanical Engineering and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorShoujun Xu
Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003 USA
Search for more papers by this authorManh-Huong Phan
Department of Physics, University of South Florida, Tampa, FL, 33620 USA
Search for more papers by this authorCorresponding Author
T. Randall Lee
Department of Chemistry and the Texas Center for Superconductivity, University of Houston, Houston, TX, 77204-5003 USA
E-mail: [email protected]
Search for more papers by this authorAbstract
Iron oxide nanoparticles (IONPs) are widely used for biomedical applications due to their unique magnetic properties and biocompatibility. However, the controlled synthesis of IONPs with tunable particle sizes and crystallite/grain sizes to achieve desired magnetic functionalities across single-domain and multi-domain size ranges remains an important challenge. Here, a facile synthetic method is used to produce iron oxide nanospheres (IONSs) with controllable size and crystallinity for magnetic tunability. First, highly crystalline Fe3O4 IONSs (crystallite sizes above 24 nm) having an average diameter of 50 to 400 nm are synthesized with enhanced ferrimagnetic properties. The magnetic properties of these highly crystalline IONSs are comparable to those of their nanocube counterparts, which typically possess superior magnetic properties. Second, the crystallite size can be widely tuned from 37 to 10 nm while maintaining the overall particle diameter, thereby allowing precise manipulation from the ferrimagnetic to the superparamagnetic state. In addition, demonstrations of reaction scale-up and the proposed growth mechanism of the IONSs are presented. This study highlights the pivotal role of crystal size in controlling the magnetic properties of IONSs and offers a viable means to produce IONSs with magnetic properties desirable for wider applications in sensors, electronics, energy, environmental remediation, and biomedicine.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202402940-sup-0001-SuppMat.pdf1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Lisjak, A. Mertelj, Prog. Mater. Sci. 2018, 95, 286.
- 2D. Bobo, K. J. Robinson, J. Islam, K. J. Thurecht, S. R. Corrie, Pharm. Res. 2016, 33, 2373.
- 3S. Liu, B. Yu, S. Wang, Y. Shen, H. Cong, Adv. Colloid Interface Sci. 2020, 281, 102165.
- 4S. Khizar, N. M. Ahmad, N. Zine, N. Jaffrezic-Renault, A. Errachid-el-salhi, A. Elaissari, ACS Appl. Nano Mater. 2021, 4, 4284.
- 5H. Gavilán, S. Kumar Avugadda, T. Fernández-Cabada, N. Soni, M. Cassani, B. T. Mai, R. Chantrell, T. Pellegrino, Chem. Soc. Rev. 2021, 50, 11614.
- 6Z. W. Tay, S. Savliwala, D. W. Hensley, K. L. B. Fung, C. Colson, B. D. Fellows, X. Zhou, Q. Huynh, Y. Lu, B. Zheng, P. Chandrasekharan, S. M. Rivera-Jimenez, C. M. Rinaldi-Ramos, S. M. Conolly, Small Methods 2021, 5, 2100796.
- 7J. Ji, Y. Huang, J. Yin, X. Zhao, X. Cheng, J. He, J. Wang, X. Li, J. Liu, J. Phys. Chem. C 2018, 122, 3628.
- 8G. C. Lavorato, R. Das, J. A. Masa, M.-H. Phan, H. Srikanth, Nanoscale Adv. 2021, 3, 867.
- 9X. Ge, J. Mohapatra, E. Silva, G. He, L. Gong, T. Lyu, R. P. Madhogaria, X. Zhao, Y. Cheng, A. M. Al-Enizi, A. Nafady, J. Tian, J. P. Liu, M.-H. Phan, F. Taraballi, R. I. Pettigrew, S. Ma, Small 2024, 20, 2306940.
- 10P. Q. Thong, L. T. Thu Huong, N. D. Tu, H. T. My Nhung, L. Khanh, D. H. Manh, P. H. Nam, N. X. Phuc, J. Alonso, J. Qiao, S. Sridhar, H. P. Thu, M. H. Phan, N. T. Kim Thanh, Nanomedicine 2022, 17, 1677.
- 11M. D. Nguyen, H.-V. Tran, S. Xu, T. R. Lee, Appl. Sci. 2021, 11, 11301.
- 12H.-V. Tran, N. M. Ngo, R. Medhi, P. Srinoi, T. Liu, S. Rittikulsittichai, T. R. Lee, Materials 2022, 15, 503.
- 13A. Feld, A. Weimer, A. Kornowski, N. Winckelmans, J.-P. Merkl, H. Kloust, R. Zierold, C. Schmidtke, T. Schotten, M. Riedner, S. Bals, H. Weller, ACS Nano 2019, 13, 152.
- 14L. Qiao, Z. Fu, J. Li, J. Ghosen, M. Zeng, J. Stebbins, P. N. Prasad, M. T. Swihart, ACS Nano 2017, 11, 6370.
- 15X. Tian, L. Ruan, S. Zhou, L. Wu, J. Cao, X. Qi, X. Zhang, S. Shen, ACS Appl. Bio Mater. 2022, 5, 1692.
- 16J. Muro-Cruces, A. G. Roca, A. López-Ortega, E. Fantechi, D. del-Pozo-Bueno, S. Estradé, F. Peiró, B. Sepúlveda, F. Pineider, C. Sangregorio, J. Nogues, ACS Nano 2019, 13, 7716.
- 17M.-H. Phan, J. Alonso, H. Khurshid, P. Lampen-Kelley, S. Chandra, K. Stojak Repa, Z. Nemati, R. Das, Ó. Iglesias, H. Srikanth, Nanomaterials 2016, 6, 221.
- 18K. M. Kirkpatrick, B. H. Zhou, P. C. Bunting, J. D. Rinehart, Chem. Mater. 2022, 34, 8043.
- 19M. Kampferbeck, L. R. Klauke, H. Weller, T. Vossmeyer, Langmuir 2021, 37, 9851.
- 20H. Gavilán, G. M. R. Rizzo, N. Silvestri, B. T. Mai, T. Pellegrino, Nat. Protoc. 2023, 18, 783.
- 21S. Sun, H. Zeng, J. Am. Chem. Soc. 2002, 124, 8204.
- 22J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, T. Hyeon, Nat. Mater. 2004, 3, 891.
- 23H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, Angew. Chem., Int. Ed. 2005, 44, 2782.
- 24Y. Liu, T. Cui, Y. Li, Y. Zhao, Y. Ye, W. Wu, G. Tong, Mater. Chem. Phys. 2016, 173, 152.
- 25T. Balakrishnan, M.-J. Lee, J. Dey, S.-M. Choi, CrystEngComm 2019, 21, 4063.
- 26P. K. Narnaware, C. Ravikumar, J. Phys. Chem. C 2020, 124, 25010.
- 27R. Chen, M. G. Christiansen, A. Sourakov, A. Mohr, Y. Matsumoto, S. Okada, A. Jasanoff, P. Anikeeva, Nano Lett. 2016, 16, 1345.
- 28M. Unni, A. M. Uhl, S. Savliwala, B. H. Savitzky, R. Dhavalikar, N. Garraud, D. P. Arnold, L. F. Kourkoutis, J. S. Andrew, C. Rinaldi, ACS Nano 2017, 11, 2284.
- 29A. N. Solodov, J. R. Shayimova, E. A. Burilova, D. V. Shurtakova, Y. I. Zhuravleva, M. A. Cherosov, Y. Tian, A. G. Kiiamov, R. R. Amirov, J. Phys. Chem. C 2021, 125, 20980.
- 30H. Chang, B. H. Kim, H. Y. Jeong, J. H. Moon, M. Park, K. Shin, S. I. Chae, J. Lee, T. Kang, B. K. Choi, J. Yang, M. S. Bootharaju, H. Song, S. H. An, K. M. Park, J. Y. Oh, H. Lee, M. S. Kim, J. Park, T. Hyeon, J. Am. Chem. Soc. 2019, 141, 7037.
- 31I. Castellanos-Rubio, O. Arriortua, D. Iglesias-Rojas, A. Barón, I. Rodrigo, L. Marcano, J. S. Garitaonandia, I. Orue, M. L. Fdez-Gubieda, M. Insausti, Chem. Mater. 2021, 33, 8693.
- 32S. Xuan, Y.-X. J. Wang, J. C. Yu, K. Cham-Fai Leung, Chem. Mater. 2009, 21, 5079.
- 33Y. Chen, J. Zhang, Z. Wang, Z. Zhou, Appl. Sci. 2019, 9, 5157.
- 34S. Xuan, F. Wang, Y.-X. J. Wang, J. C. Yu, K. Cham-Fai Leung, J. Mater. Chem. 2010, 20, 5086.
- 35Y.-T. Chen, R. Medhi, I. Nekrashevich, D. Litvinov, S. Xu, T. R. Lee, Anal. Chem. 2018, 90, 6749.
- 36J. Ge, Y. Hu, M. Biasini, W. P. Beyermann, Y. Yin, Angew. Chem., Int. Ed. 2007, 46, 4342.
- 37A. G. Kolhatkar, Y.-T. Chen, P. Chinwangso, I. Nekrashevich, G. C. Dannangoda, A. Singh, A. C. Jamison, O. Zenasni, I. A. Rusakova, K. S. Martirosyan, D. Litvinov, S. Xu, R. C. Willson, T. R. Lee, ACS Omega 2017, 2, 8010.
- 38W. E. M. Elsayed, F. S. Al-Hazmi, L. S. Memesh, L. M. Bronstein, Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 239.
- 39Z. Nemati, J. Alonso, I. Rodrigo, R. Das, E. Garaio, J. Á. García, I. Orue, M.-H. Phan, H. Srikanth, J. Phys. Chem. C 2018, 122, 2367.
- 40S. D. Shingte, A. H. Phakatkar, E. McKiernan, K. Nigoghossian, S. Ferguson, R. Shahbazian-Yassar, D. F. Brougham, Chem. Mater. 2022, 34, 10801.
- 41T. Yamashita, P. Hayes, Appl. Surf. Sci. 2008, 254, 2441.
- 42A. P. Grosvenor, B. A. Kobe, M. C. Biesinger, N. S. McIntyre, Surf. Interface Anal. 2004, 36, 1564.
- 43R. M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, John Wiley & Sons, New Jersey, USA 2003.
10.1002/3527602097 Google Scholar
- 44I. Chamritski, G. Burns, J. Phys. Chem. B 2005, 109, 4965.
- 45M. Hanesch, Geophys. J. Int. 2009, 177, 941.
- 46R. Otero-Lorenzo, M. A. Ramos-Docampo, B. Rodríguez-González, M. Comesaña-Hermo, V. Salgueiriño, Chem. Mater. 2017, 29, 8729.
- 47Z. Nemati, R. Das, J. Alonso, E. Clements, M. H. Phan, H. Srikanth, J. Electron. Mater. 2017, 46, 3764.
- 48D. Kim, N. Lee, M. Park, B. H. Kim, K. An, T. Hyeon, J. Am. Chem. Soc. 2009, 131, 454.
- 49K. J. Klabunde, R. M. Richards, Nanoscale Materials in Chemistry, John Wiley & Sons, New Jersey, USA 2009.
10.1002/9780470523674 Google Scholar
- 50Z. Xu, C. Shen, Y. Hou, H. Gao, S. Sun, Chem. Mater. 2009, 21, 1778.
- 51A.-H. Lu, E. L. Salabas, F. Schüth, Angew. Chem., Int. Ed. 2007, 46, 1222.
- 52R. Das, J. Alonso, Z. Nemati Porshokouh, V. Kalappattil, D. Torres, M.-H. Phan, E. Garaio, J. Á. García, J. L. Sanchez Llamazares, H. Srikanth, J. Phys. Chem. C 2016, 120, 10086.
- 53M. Bohra, N. Agarwal, V. Singh, J. Nanomater. 2019, 2019, 1.
- 54W. Xu, M. Ji, Y. Chen, H. Zheng, L. Wang, D.-L. Peng, J. Phys. Chem. C 2021, 125, 5880.
- 55R. K. Zheng, H. Gu, B. Xu, X. X. Zhang, J. Phys.: Condens. Matter 2006, 18, 5905.
- 56R. Sappey, E. Vincent, N. Hadacek, F. Chaput, J. P. Boilot, D. Zins, Phys. Rev. B 1997, 56, 14551.
- 57K. L. Livesey, S. Ruta, N. R. Anderson, D. Baldomir, R. W. Chantrell, D. Serantes, Sci. Rep. 2018, 8, 11166.
- 58N. A. Frey, M. H. Phan, H. Srikanth, S. Srinath, C. Wang, S. Sun, J. Appl. Phys. 2009, 105, 07B502.
- 59W. Wu, Z. Wu, T. Yu, C. Jiang, W.-S. Kim, Sci. Technol. Adv. Mater. 2015, 16, 023501.
- 60W. Wu, X. Xiao, S. Zhang, T. Peng, J. Zhou, F. Ren, C. Jiang, Nanoscale Res. Lett. 2010, 5, 1474.
- 61A. A. Krasikov, Y. V. Knyazev, D. A. Balaev, D. A. Velikanov, S. V. Stolyar, Y. L. Mikhlin, R. N. Yaroslavtsev, R. S. Iskhakov, Physica B Condens. Matter 2023, 660, 414901.
- 62Q. Chen, Z. J. Zhang, Appl. Phys. Lett. 1998, 73, 3156.
- 63Y. Wang, Y. Zheng, C. Z. Huang, Y. Xia, J. Am. Chem. Soc. 2013, 135, 1941.
- 64M. Colombo, S. Carregal-Romero, M. F. Casula, L. Gutiérrez, M. P. Morales, I. B. Böhm, J. T. Heverhagen, D. Prosperi, W. J. Parak, Chem. Soc. Rev. 2012, 41, 4306.