Microfluidic Impedance Cytometry Enabled One-Step Sample Preparation for Efficient Single-Cell Mass Spectrometry
Junwen Zhu
State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorSiyuan Pan
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorHuichao Chai
State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorPeng Zhao
State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorYongxiang Feng
State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorZhen Cheng
Department of Automation, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorSichun Zhang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Wenhui Wang
State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084 China
E-mail: [email protected]
Search for more papers by this authorJunwen Zhu
State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorSiyuan Pan
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorHuichao Chai
State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorPeng Zhao
State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorYongxiang Feng
State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorZhen Cheng
Department of Automation, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorSichun Zhang
Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Wenhui Wang
State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Single-cell mass spectrometry (MS) is significant in biochemical analysis and holds great potential in biomedical applications. Efficient sample preparation like sorting (i.e., separating target cells from the mixed population) and desalting (i.e., moving the cells off non-volatile salt solution) is urgently required in single-cell MS. However, traditional sample preparation methods suffer from complicated operation with various apparatus, or insufficient performance. Herein, a one-step sample preparation strategy by leveraging label-free impedance flow cytometry (IFC) based microfluidics is proposed. Specifically, the IFC framework to characterize and sort single-cells is adopted. Simultaneously with sorting, the target cell is transferred from the local high-salinity buffer to the MS-compatible solution. In this way, one-step sorting and desalting are achieved and the collected cells can be directly fed for MS analysis. A high sorting efficiency (>99%), cancer cell purity (≈87%), and desalting efficiency (>99%), and the whole workflow of impedance-based separation and MS analysis of normal cells (MCF-10A) and cancer cells (MDA-MB-468) are verified. As a standalone sample preparation module, the microfluidic chip is compatible with a variety of MS analysis methods, and envisioned to provide a new paradigm in efficient MS sample preparation, and further in multi-modal (i.e., electrical and metabolic) characterization of single-cells.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202310700-sup-0001-SuppMat.pdf3.1 MB | Supporting Information |
smll202310700-sup-0002-VideoS1.mp412.3 MB | Supplemental Video 1 |
smll202310700-sup-0003-VideoS2.mp432.9 MB | Supplemental Video 2 |
smll202310700-sup-0004-VideoS3.mp421.2 MB | Supplemental Video 3 |
smll202310700-sup-0005-VideoS4.mp43.8 MB | Supplemental Video 4 |
smll202310700-sup-0006-VideoS5.mp421.1 MB | Supplemental Video 5 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) S. Yang, J. Rufo, R. Zhong, J. Rich, Z. Wang, L. P. Lee, T. J. Huang, Nat. Protoc. 2023, 18, 2441; b) P. Badia-I-Mompel, L. Wessels, S. Müller-Dott, R. Trimbour, R. O. Ramirez Flores, R. Argelaguet, J. Saez-Rodriguez, Nat. Rev. Genet. 2023, 24, 739; c) L. Huang, X. Zhang, Y. Feng, F. Liang, W. Wang, Lab Chip. 2022, 22, 1206; d) L. Huang, S. Bian, Y. Cheng, G. Shi, P. Liu, X. Ye, W. Wang, Biomicrofluidics. 2017, 11, 011501.
- 2a) J. Källberg, W. Xiao, D. Van Assche, J.-C. Baret, V. Taly, Lab Chip. 2022, 22, 2403;
b) Q. Liu, S. Martinez-Jarquin, R. Zenobi, Ccs Chem. 2022, 5, 310;
10.31635/ccschem.022.202202333 Google Scholarc) T. Xu, D. Feng, H. Li, X. Hu, T. Wang, C. Hu, X. Shi, G. Xu, TrAC, Trends Anal. Chem. 2022, 157, 116763.
- 3J. Feng, X. Zhang, L. Huang, H. Yao, C. Yang, X. Ma, S. Zhang, X. Zhang, Anal. Chem. 2019, 19, 5613.
10.1021/acs.analchem.8b05226 Google Scholar
- 4Z. Shen, H. Zhao, H. Yao, X. Pan, J. Yang, S. Zhang, G. Han, X. Zhang, Chem. Sci. 2022, 13, 1641.
- 5Z. Li, S. Cheng, Q. Lin, W. Cao, J. Yang, M. Zhang, A. Shen, W. Zhang, Y. Xia, X. Ma, Z. Ouyang, Nat. Commun. 2021, 12, 2869.
- 6a) P. Zhao, Y. Feng, J. Wu, J. Zhu, J. Yang, X. Ma, Z. Ouyang, X. Zhang, W. Zhang, W. Wang, Anal. Chem. 2023, 95, 7212; b) H. Zhu, G. Zou, N. Wang, M. Zhuang, W. Xiong, G. Huang, Proc. Natl. Acad. Sci. 2017, 114, 2586; c) P. Zhao, S. Cheng, Y. Feng, F. Liang, X. Zhang, X. Ma, W. Wang, IEEE Trans. Biomed. Eng. 2023, 70, 470.
- 7a) Q. Li, F. Tang, X. Huo, X. Huang, Y. Zhang, X. Wang, X. Zhang, Anal. Chem. 2019, 91, 8115; b) L. Rappez, M. Stadler, S. Triana, R. M. Gathungu, K. Ovchinnikova, P. Phapale, M. Heikenwalder, T. Alexandrov, Nat. Methods. 2021, 18, 799.
- 8a) G. Zhu, Y. Shao, Y. Liu, T. Pei, L. Li, D. Zhang, G. Guo, X. Wang, TrAC, Trends Anal. Chem. 2021, 143, 116351; b) C. Wu, X. Wei, X. Men, X. Zhang, Y.-L. Yu, Z.-R. Xu, M.-L. Chen, J.-H. Wang, Anal. Chem. 2021, 93, 8203.
- 9a) L. J. Sparvero, H. Tian, A. A. Amoscato, W. Y. Sun, T. S. Anthonymuthu, Y. Y. Tyurina, O. Kapralov, S. Javadov, R. R. He, S. C. Watkins, N. Winograd, V. E. Kagan, H. Bayır, Angew. Chem., Int. Ed. 2021, 60, 11784; b) H. Tian, L. J. Sparvero, T. S. Anthonymuthu, W.-Y. Sun, A. A. Amoscato, R.-R. He, H. Bayır, V. E. Kagan, N. Winograd, Anal. Chem. 2021, 93, 8143.
- 10a) B. Korin, T. Dubovik, A. Rolls, Nat. Protoc. 2018, 13, 377; b) A. H. Maag, H. Swanton, M. Kull, N. M. Vegi, M. Feuring, Cytometry, Part A. 2023, 103, 551; c) D. R. Bandura, V. I. Baranov, O. I. Ornatsky, A. Antonov, R. Kinach, X. Lou, S. Pavlov, S. Vorobiev, J. E. Dick, S. D. Tanner, Anal. Chem. 2009, 81, 6813.
- 11a) H. Yao, H. Zhao, X. Zhao, X. Pan, J. Feng, F. Xu, S. Zhang, X. Zhang, Anal. Chem. 2019, 91, 9777; b) Q. Liu, W. Ge, T. Wang, J. Lan, S. Martínez-Jarquín, C. Wolfrum, M. Stoffel, R. Zenobi, Angew. Chem., Int. Ed. 2021, 60, 24534; c) D. Feng, H. Li, T. Xu, F. Zheng, C. Hu, X. Shi, G. Xu, Anal. Chim. Acta. 2022, 1221, 340116.
- 12J. Zhang, J. H. Hartman, C. Chen, S. Yang, Q. Li, Z. Tian, P. H. Huang, L. Wang, J. N. Meyer, T. J. Huang, Lab Chip. 2020, 20, 1729.
- 13B. A. Sutermaster, E. M. Darling, Sci. Rep. 2019, 9, 227.
- 14a) Q. Fang, Y. Feng, J. Zhu, L. Huang, W. Wang, Anal. Chem. 2023, 95, 6374; b) Y. Zhang, Y. Zhao, D. Chen, K. Wang, Y. Wei, Y. Xu, C. Huang, J. Wang, J. Chen, Analyst. 2019, 144, 1008; c) Y. Ye, W. Zhao, J. Chen, J. Cheng, X. Wei, L. Zhang, H. Mao, M. Li, Y. Zhao, C. Huang, in 2020 IEEE 33rd Int. Conf. on Micro Electro Mechanical Systems (MEMS), IEEE, Piscataway, New Jersey 2020, 1040; d) C. Petchakup, H. Yang, L. Gong, L. He, H. M. Tay, R. Dalan, A. J. Chung, K. H. H. Li, H. W. Hou, Small. 2022, 18, 2104822; e) T. Tang, X. Liu, Y. Yuan, T. Zhang, R. Kiya, Y. Yang, Y. Yamazaki, H. Kamikubo, Y. Tanaka, M. Li, Y. Hosokawa, Y. Yalikun, ACS Sens. 2022, 7, 3700.
- 15R. Reale, A. Ninno, T. Nepi, P. Bisegna, F. Caselli, IEEE Trans. Biomed. Eng. 2022, 70, 565.
- 16a) Y. Feng, Z. Cheng, H. Chai, W. He, L. Huang, W. Wang, Lab Chip. 2022, 22, 240; b) A. Salahi, C. Honrado, A. Rane, F. Caselli, N. S. Swami, Anal. Chem. 2022, 94, 2865.
- 17a) Y. Feng, H. Chai, W. He, F. Liang, Z. Cheng, W. Wang, Small Methods. 2022, 6, 2200325; b) Y. Feng, J. Zhu, H. Chai, W. He, L. Huang, W. Wang, Small. 2023, 19, 2303416.
- 18a) L. Huang, P. Zhao, W. Wang, Lab Chip. 2018, 18, 2359; b) L. Huang, F. Liang, Y. Feng, P. Zhao, W. Wang, Microsyst. Nanoeng. 2020, 6, 57.
- 19K. Wang, C.-C. Chang, T.-K. Chiu, X. Zhao, D. Chen, W.-P. Chou, Y. Zhao, H.-M. Wang, J. Wang, M.-H. Wu, J. Chen, J. R. Soc., Interface. 2017, 14, 20170717.
- 20D. Tang, M. Chen, Y. Han, N. Xiang, Z. Ni, Sens. Actuators, B. 2021, 336, 129719.
- 21a) Y. Wang, X. Wang, T. Pan, B. Li, J. Chu, Lab Chip. 2021, 22, 15; b) N. Nitta, T. Sugimura, A. Isozaki, H. Mikami, K. Hiraki, S. Sakuma, T. Iino, F. Arai, T. Endo, Y. Fujiwaki, H. Fukuzawa, M. Hase, T. Hayakawa, K. Hiramatsu, Y. Hoshino, M. Inaba, T. Ito, H. Karakawa, Y. Kasai, K. Koizumi, S. Lee, C. Lei, M. Li, T. Maeno, S. Matsusaka, D. Murakami, A. Nakagawa, Y. Oguchi, M. Oikawa, T. Ota, Cell. 2018, 175, 266.
- 22a) L. Menze, P. A. Duarte, L. Haddon, M. Chu, J. Chen, ACS Nano. 2022, 16, 211; b) A. Isozaki, Y. Nakagawa, M. H. Loo, Y. Shibata, N. Tanaka, D. L. Setyaningrum, J. W. Park, Y. Shirasaki, H. Mikami, D. Huang, H. Tsoi, C. T. Riche, T. Ota, H. Miwa, Y. Kanda, T. Ito, K. Yamada, O. Iwata, K. Suzuki, S. Ohnuki, Y. Ohya, Y. Kato, T. Hasunuma, S. Matsusaka, M. Yamagishi, M. Yazawa, S. Uemura, K. Nagasawa, H. Watarai, D. Di Carlo, et al., Sci. Adv. 2020, 6, eaba6712; c) H. Chai, J. Zhu, Y. Feng, F. Liang, Q. Wu, Z. Ju, L. Huang, W. Wang, Adv. Mater. 2024, 36, 2310212.
- 23a) R. Zhong, S. Yang, G. S. Ugolini, T. Naquin, J. Zhang, K. Yang, J. Xia, T. Konry, T. J. Huang, Small. 2021, 17, 2103848; b) J. Zhong, P. Li, M. Liang, Y. Ai, Adv. Mater. Techn. 2021, 7, 2100906.
- 24Z. Jiao, Y. Han, J. Zhao, Z. Chao, A. Tárnok, Z. You, Microsyst. Nanoeng. 2022, 8, 52.
- 25G. Choi, R. Nouri, L. Zarzar, W. Guan, Microsyst. Nanoeng. 2020, 6, 11.
- 26Y. Chen, A. J. Chung, T.-H. Wu, M. A. Teitell, D. Di Carlo, P.-Y. Chiou, Small. 2014, 10, 1746.
- 27N. Reyes-Garcés, E. Gionfriddo, G. A. Gómez-Ríos, M. N. Alam, E. Boyacı, B. Bojko, V. Singh, J. Grandy, J. Pawliszyn, Anal. Chem. 2018, 90, 302.
- 28M. Pendela, J. Hoogmartens, A. Van Schepdael, E. Adams, J. Sep. Sci. 2009, 32, 3418.
- 29J. Cavanagh, R. Thompson, B. Bobay, L. M. Benson, S. Naylor, Biochemistry. 2002, 41, 7859.
- 30X. Gong, X. Xiong, S. Wang, Y. Li, S. Zhang, X. Fang, X. Zhang, Anal. Chem. 2015, 87, 9745.
- 31Z. Zhang, C. J. Pulliam, T. Flick, R. G. Cooks, Anal. Chem. 2018, 90, 3856.
- 32Y. Ren, M. N. McLuckey, J. Liu, Z. Ouyang, Angew Chem Int Ed Engl. 2014, 53, 14124.
- 33P. C. Kalikavunkal, N. G. Green, M. R. R. de Planque, Microfluid Nanofluidics. 2019, 23, 111.
10.1007/s10404-019-2277-z Google Scholar
- 34S. J. Kim, S. H. Ko, K. H. Kang, J. Han, Nat. Nanotechnol. 2010, 5, 297.
- 35a) X. Gong, X. Xiong, Y. Zhao, S. Ye, X. Fang, Anal. Chem. 2017, 89, 7009; b) Z. Wei, S. Han, X. Gong, Y. Zhao, C. Yang, S. Zhang, X. Zhang, Angew Chem Int Ed Engl. 2013, 52, 11025.
- 36X.-C. Zhang, Z.-W. Wei, X.-Y. Gong, X.-Y. Si, Y.-Y. Zhao, C.-D. Yang, S.-C. Zhang, X.-R. Zhang, Sci. Rep. 2016, 6, 24730.
- 37S. Xu, J. Xue, Y. Bai, H. Liu, Anal. Chem. 2020, 92, 15854.
- 38a) M. Liang, Q. Tang, J. Zhong, Y. Ai, Biosens. Bioelectron. 2023, 225, 115086; b) J. Zhu, Y. Feng, H. Chai, F. Liang, Z. Cheng, W. Wang, Lab Chip. 2023, 23, 2531; c) H. Chai, Y. Feng, J. Zhu, X. Meng, F. Liang, J. Bai, W. Wang, ACS Sens. 2023, 8, 2681.
- 39a) Y. Shao, Y. Zhou, Y. Liu, W. Zhang, G. Zhu, Y. Zhao, Q. Zhang, H. Yao, H. Zhao, G. Guo, S. Zhang, X. Zhang, X. Wang, Chem. Sci. 2022, 13, 8065; b) Q. Liu, S. Martínez-Jarquín, W. Ge, R. Zenobi, Anal. Chem. 2023, 95, 1823.
- 40R. Kiya, T. Tang, Y. Tanaka, Y. Hosokawa, Y. Yalikun, Sci. Rep. 2023, 13, 405.
- 41M. Dambrova, M. Makrecka-Kuka, J. Kuka, R. Vilskersts, D. Nordberg, M. M. Attwood, S. Smesny, Z. D. Sen, A. C. Guo, E. Oler, S. Tian, J. Zheng, D. S. Wishart, E. Liepinsh, H. B. Schiöth, Pharmacol. Rev. 2022, 74, 506.
- 42E. Calzada, O. Onguka, S. M. Claypool, Int Rev Cell Mol Biol. 2016, 321, 29.