Gelatin-Encapsulated Tetrahedral DNA Nanostructure Enhances Cellular Internalization for Treating Noise-Induced Hearing Loss
Ke Xu
Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200100 P. R. China
Search for more papers by this authorYiwei Du
Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200100 P. R. China
Search for more papers by this authorBaoying Xu
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444 P. R. China
Search for more papers by this authorYuqi Huang
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444 P. R. China
Search for more papers by this authorCorresponding Author
Wei Feng
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444 P. R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Dehong Yu
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444 P. R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yu Chen
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444 P. R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xueling Wang
Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200100 P. R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorKe Xu
Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200100 P. R. China
Search for more papers by this authorYiwei Du
Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200100 P. R. China
Search for more papers by this authorBaoying Xu
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444 P. R. China
Search for more papers by this authorYuqi Huang
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444 P. R. China
Search for more papers by this authorCorresponding Author
Wei Feng
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444 P. R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Dehong Yu
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444 P. R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yu Chen
Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444 P. R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xueling Wang
Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200100 P. R. China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Nanoparticle-based drug delivery strategies have emerged as a crucial avenue for comprehensive sensorineural hearing loss treatment. Nevertheless, developing therapy vectors crossing both biological and cellular barriers has encountered significant challenges deriving from various external factors. Herein, the rational integration of gelatin nanoparticles (GNPs) with tetrahedral DNA nanostructures (TDNs) to engineer a distinct drug-delivery nanosystem (designed as TDN@GNP) efficiently enhances the biological permeability and cellular internalization, further resolving the dilemma of noise-induced hearing loss via loading epigallocatechin gallate (EGCG) with anti-lipid peroxidation property. Rationally engineering of TDN@GNP demonstrates dramatic alterations in the physicochemical key parameters of TDNs that are pivotal in cell-particle interactions and promote cellular uptake through multiple endocytic pathways. Furthermore, the EGCG-loaded nanosystem (TDN-EGCG@GNP) facilitates efficient inner ear drug delivery by superior permeability through the biological barrier (round window membrane), maintaining high drug concentration within the inner ear. The TDN-EGCG@GNP actively overcomes the cell membrane, exhibiting hearing protection from noise insults via reduced lipid peroxidation in outer hair cells and spiral ganglion neurons. This work exemplifies how integrating diverse vector functionalities can overcome biological and cellular barriers in the inner ear, offering promising applications for inner ear disorders.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202310604-sup-0001-SuppMat.pdf1.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Foster, M. Lewkowicz, C. Quintas, C. M. Ionescu, M. Jones, S. R. Wagle, B. Kovacevic, E. Wong, A. Mooranian, H. Al-Salami, Small 2023, 19, 2204986.
- 2R. Glueckert, C. L. Johnson, H. Rask-Andersen, W. Liu, S. Handschuh, A. Schrott-Fischer, Hear. Res. 2018, 368, 10.
- 3S. Nyberg, N. J. Abbott, X. Shi, P. S. Steyger, A. Dabdoub, Sci. Transl. Med. 2019, 11, eaao0935.
- 4P. Zhan, A. Peil, Q. Jiang, D. Wang, S. Mousavi, Q. Xiong, Q. Shen, Y. Shang, B. Ding, C. Lin, Y. Ke, N. Liu, Chem. Rev. 2023, 123, 3976.
- 5G. Han, B. Liu, D. Kong, L. Zhu, Mater. Chem. Front. 2023, 7, 6345.
- 6A. S. Walsh, H. Yin, C. M. Erben, M. J. Wood, A. J. Turberfield, ACS Nano 2011, 5, 5427.
- 7S. Li, Y. Liu, T. Zhang, S. Lin, S. Shi, J. He, Y. Xie, X. Cai, T. Tian, Y. Lin, Adv. Mater. 2022, 34, 2204287.
- 8T. Zhang, T. Tian, Y. Lin, Adv. Mater. 2022, 34, 2107820.
- 9Y. Yuan, Z. Gu, C. Yao, D. Luo, D. Yang, Small 2019, 15, 1900172.
- 10Y. Chen, J. Gu, Y. Liu, K. Xu, J. Song, X. Wang, D. Yu, H. Wu, Nanoscale 2022, 14, 8000.
- 11L. Liang, J. Li, Q. Li, Q. Huang, J. Shi, H. Yan, C. Fan, Angew. Chem., Int. Ed. Engl. 2014, 53, 7745.
- 12Y. Gao, X. Chen, T. Tian, T. Zhang, S. Gao, X. Zhang, Y. Yao, Y. Lin, X. Cai, Adv. Mater. 2022, 34, 2201731.
- 13K. R. Kim, H. Jegal, J. Kim, D. R. Ahn, Biomater. Sci. 2020, 8, 586.
- 14J. Zhang, Y. Guo, F. Ding, G. Pan, X. Zhu, C. Zhang, Angew. Chem., Int. Ed. Engl. 2019, 58, 13794.
- 15Q. Li, D. Zhao, X. Shao, S. Lin, X. Xie, M. Liu, W. Ma, S. Shi, Y. Lin, ACS Appl. Mater. Interfaces 2017, 9, 36695.
- 16X. Y. Lu, D. C. Wu, Z. J. Li, G. Q. Chen, Prog. Mol. Biol. Transl. Sci. 2011, 104, 299.
- 17J. Kaltbeitzel, P. R. Wich, Angew. Chem., Int. Ed. Engl. 2023, 62, 202216097.
- 18J. Gu, X. Wang, Y. Chen, K. Xu, D. Yu, H. Wu, J. Nanobiotechnol. 2022, 20, 268.
- 19C. Sun, X. Wang, Z. Zheng, D. Chen, X. Wang, F. Shi, D. Yu, H. Wu, Int. J. Nanomed. 2015, 10, 3567.
- 20A. K. Gupta, M. Gupta, S. J. Yarwood, A. S. Curtis, J. Controlled Release 2004, 95, 197.
- 21C. Coester, P. Nayyar, J. Samuel, Eur. J. Pharm. Biopharm. 2006, 62, 306.
- 22G. K. Zorzi, J. E. Parraga, B. Seijo, A. Sanchez, Macromol. Biosci. 2011, 11, 905.
- 23A. O. Elzoghby, J. Controlled Release 2013, 172, 1075.
- 24J. Xu, S. Ganesh, M. Amiji, Int. J. Pharm. 2012, 427, 21.
- 25P. Charoenphol, H. Bermudez, Mol. Pharmaceutics 2014, 11, 1721.
- 26J. W. Keum, J. H. Ahn, H. Bermudez, Small 2011, 7, 3529.
- 27S. Raniolo, G. Vindigni, V. Unida, A. Ottaviani, E. Romano, A. Desideri, S. Biocca, Nanoscale 2018, 10, 12078.
- 28S. A. Khan, M. Schneider, Macromol. Biosci. 2013, 13, 455.
- 29M. Iqbal, N. Zafar, H. Fessi, A. Elaissari, Int. J. Pharm. 2015, 496, 173.
- 30R. A. Petros, J. M. Desimone, Nat. Rev. Drug Discovery 2010, 9, 615.
- 31S. Ruan, Q. He, H. Gao, Nanoscale 2015, 7, 9487.
- 32C. Wong, T. Stylianopoulos, J. Cui, J. Martin, V. P. Chauhan, W. Jiang, Z. Popovic, R. K. Jain, M. G. Bawendi, D. Fukumura, Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 2426.
- 33H. Ding, J. Li, N. Chen, X. Hu, X. Yang, L. Guo, Q. Li, X. Zuo, L. Wang, Y. Ma, C. Fan, ACS Cent. Sci. 2018, 4, 1344.
- 34E. Leo, R. Cameroni, F. Forni, Int. J. Pharm. 1999, 180, 23.
- 35V. Cassinelli, B. Oberleitner, J. Sobotta, P. Nickels, G. Grossi, S. Kempter, T. Frischmuth, T. Liedl, A. Manetto, Angew. Chem., Int. Ed. Engl. 2015, 54, 7795.
- 36J. Hahn, S. F. Wickham, W. M. Shih, S. D. Perrault, ACS Nano 2014, 8, 8765.
- 37H. Wang, O. C. Boerman, K. Sariibrahimoglu, Y. Li, J. A. Jansen, S. C. Leeuwenburgh, Biomaterials 2012, 33, 8695.
- 38K. M. Poole, C. E. Nelson, R. V. Joshi, J. R. Martin, M. K. Gupta, S. C. Haws, T. E. Kavanaugh, M. C. Skala, C. L. Duvall, Biomaterials 2015, 41, 166.
- 39N. D. Donahue, H. Acar, S. Wilhelm, Adv. Drug Delivery Rev. 2019, 143, 68.
- 40P. Wang, M. A. Rahman, Z. Zhao, K. Weiss, C. Zhang, Z. Chen, S. J. Hurwitz, Z. G. Chen, D. M. Shin, Y. Ke, J. Am. Chem. Soc. 2018, 140, 2478.
- 41Y. Chiu, H. Li, C. Choi, Small 2019, 15, 1805416.
- 42S. Patel, J. Kim, M. Herrera, A. Mukherjee, A. V. Kabanov, G. Sahay, Adv. Drug Delivery Rev. 2019, 144, 90.
- 43V. Francia, D. Montizaan, A. Salvati, Beilstein J. Nanotechnol. 2020, 11, 338.
- 44J. Yan, J. Chen, N. Zhang, Y. Yang, W. Zhu, L. Li, B. He, J. Mater. Chem. B 2020, 8, 492.
- 45A. E. Nel, L. Madler, D. Velegol, T. Xia, E. M. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson, Nat. Mater. 2009, 8, 543.
- 46N. Yoshinaga, T. Ishii, M. Naito, T. Endo, S. Uchida, H. Cabral, K. Osada, K. Kataoka, J. Am. Chem. Soc. 2017, 139, 18567.
- 47X. Zheng, A. Chen, T. Hoshi, J. Anzai, G. Li, Anal. Bioanal. Chem. 2006, 386, 1913.
- 48R. Galindo-Murillo, T. R. Cheatham, J. Biomol. Struct. Dyn. 2018, 36, 3311.
- 49H. Zhou, Z. Sun, T. Hoshi, Y. Kashiwagi, J. Anzai, G. Li, Biophys. Chem. 2005, 114, 21.
- 50Y. Sun, S. Bi, D. Song, C. Qiao, D. Mu, H. Zhang, Sens. Actuators, B 2008, 129, 799.
- 51Y. C. Chen, S. H. Yu, G. J. Tsai, D. W. Tang, F. L. Mi, Y. P. Peng, J. Agric. Food Chem. 2010, 58, 6728.
- 52K. N. Prasad, S. C. Bondy, Mech. Ageing Dev. 2020, 185, 111191.
- 53D. Henderson, E. C. Bielefeld, K. C. Harris, B. H. Hu, Ear Hear. 2006, 27, 1.
- 54W. Sha, F. Hu, Y. Xi, Y. Chu, S. Bu, J. Diabetes Res. 2021, 2021, 9999612.
- 55A. R. Fetoni, P. De Bartolo, S. L. Eramo, R. Rolesi, F. Paciello, C. Bergamini, R. Fato, G. Paludetti, L. Petrosini, D. Troiani, J. Neurosci. 2013, 33, 4011.
- 56Z. Zhang, X. Li, W. Zhang, D. S. Kohane, Adv. Funct. Mater. 2021, 31, 2008701.
- 57L. Zhang, Y. Xu, W. Cao, S. Xie, L. Wen, G. Chen, Int. J. Nanomed. 2018, 13, 479.
- 58H. Liu, S. Chen, Y. Zhou, X. Che, Z. Bao, S. Li, J. Xu, J. Drug Targeting 2013, 21, 846.
- 59F. Wu, H. Xiong, S. Sha, Redox Biol. 2020, 29, 101406.
- 60C. Zhu, J. C. Gausterer, H. Schopper, M. Nieratschker, N. Saidov, N. Ahmadi, C. Honeder, F. Gabor, C. Arnoldner, Audiol. Neurotol. 2018, 23, 73.
- 61Z. Zhao, Z. Han, K. Naveena, G. Lei, S. Qiu, X. Li, T. Li, X. Shi, W. Zhuang, Y. Li, Y. Qiao, H. Liu, ACS Appl. Mater. Interfaces 2021, 13, 7102.
- 62R. T. Horie, T. Sakamoto, T. Nakagawa, T. Ishihara, M. Higaki, J. Ito, Nanomedicine 2010, 5, 1331.
- 63P. A. Santi, A. R. Duvall, Otolaryngology 1978, 86, ORL354.
- 64T. Zhang, T. Tian, R. Zhou, S. Li, W. Ma, Y. Zhang, N. Liu, S. Shi, Q. Li, X. Xie, Y. Ge, M. Liu, Q. Zhang, S. Lin, X. Cai, Y. Lin, Nat. Protoc. 2020, 15, 2728.