Hierarchical 3D Electrode Design with High Mass Loading Enabling High-Energy-Density Flexible Lithium-Ion Batteries
Dong-Yeob Han
Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
Search for more papers by this authorHye Bin Son
Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
Search for more papers by this authorSang Hyun Han
Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
Search for more papers by this authorChi Keung Song
Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134 Republic of Korea
Search for more papers by this authorJaeho Jung
Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
Search for more papers by this authorSangyeop Lee
Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
Search for more papers by this authorSu Seok Choi
Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
Search for more papers by this authorCorresponding Author
Woo-Jin Song
Department of Organic Materials Engineering, Department of Chemical Engineering and Applied Chemistry, Department of Polymer Science and Engineering, Chungnam National University, Daejeon, 34134 Republic of Korea
E-mail: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Soojin Park
Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
E-mail: [email protected] and [email protected]
Search for more papers by this authorDong-Yeob Han
Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
Search for more papers by this authorHye Bin Son
Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
Search for more papers by this authorSang Hyun Han
Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
Search for more papers by this authorChi Keung Song
Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134 Republic of Korea
Search for more papers by this authorJaeho Jung
Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
Search for more papers by this authorSangyeop Lee
Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
Search for more papers by this authorSu Seok Choi
Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
Search for more papers by this authorCorresponding Author
Woo-Jin Song
Department of Organic Materials Engineering, Department of Chemical Engineering and Applied Chemistry, Department of Polymer Science and Engineering, Chungnam National University, Daejeon, 34134 Republic of Korea
E-mail: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Soojin Park
Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
E-mail: [email protected] and [email protected]
Search for more papers by this authorAbstract
Flexible lithium-ion batteries (LIBs) have attracted significant attention owing to their ever-increasing use in flexible and wearable electronic devices. However, the practical application of flexible LIBs in devices has been plagued by the challenge of simultaneously achieving high energy density and high flexibility. Herein, a hierarchical 3D electrode (H3DE) is introduced with high mass loading that can construct highly flexible LIBs with ultrahigh energy density. The H3DE features a bicontinuous structure and the active materials along with conductive agents are uniformly distributed on the 3D framework regardless of the active material type. The bicontinuous electrode/electrolyte integration enables a rapid ion/electron transport, thereby improving the redox kinetics and lowering the internal cell resistance. Moreover, the H3DE exhibits exceptional structural integrity and flexibility during repeated mechanical deformations. Benefiting from the remarkable physicochemical properties, pouch-type flexible LIBs using H3DE demonstrate stable cycling under various bending states, achieving a record-high energy density (438.6 Wh kg−1 and 20.4 mWh cm−2), and areal capacity (5.6 mAh cm−2), outperforming all previously reported flexible LIBs. This study provides a feasible solution for the preparation of high-energy-density flexible LIBs for various energy storage devices.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202305416-sup-0001-SuppMat.pdf970.3 KB | Supporting Information |
smll202305416-sup-0002-MovieS1.mp41.1 MB | Supplemental Movie 1 |
smll202305416-sup-0003-MovieS2.mp41 MB | Supplemental Movie 2 |
smll202305416-sup-0004-MovieS3.mp41.7 MB | Supplemental Movie 3 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) W.-J. Song, S. Lee, G. Song, H. B. Son, D.-Y. Han, I. Jeong, Y. Bang, S. Park, Energy Storage Mater. 2020, 30, 260; b) G. M. Zhou, F. Li, H. M. Cheng, Energy Environ. Sci. 2014, 7, 1307; c) Y. Khan, A. Thielens, S. Muin, J. Ting, C. Baumbauer, A. C. Arias, Adv. Mater. 2020, 32, 1905279.
- 2a) J. Q. He, C. H. Lu, H. B. Jiang, F. Han, X. Shi, J. X. Wu, L. Y. Wang, T. Q. Chen, J. J. Wang, Y. Zhang, H. Yang, G. Q. Zhang, X. M. Sun, B. J. Wang, P. N. Chen, Y. G. Wang, Y. Y. Xia, H. S. Peng, Nature 2021, 597, 57; b) D. G. Mackanic, M. Kao, Z. A. Bao, Adv. Energy Mater. 2020, 10, 2001424; c) Z. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepro, D. S. Galvao, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, R. Wang, H. Y. Wang, W. Lv, C. Dong, R. C. Zhang, M. J. Chen, Q. Yin, Y. T. Chong, R. Zhang, X. Wang, M. D. Lima, R. Ovalle-Robles, D. Qian, H. Lu, R. H. Baughman, Science 2015, 349, 400.
- 3a) J. Ryu, W. J. Song, S. Lee, S. Choi, S. Park, Adv. Funct. Mater. 2020, 30, 1902499; b) J. Chang, Q. Y. Huang, Y. Gao, Z. J. Zheng, Adv. Mater. 2021, 33, 2004419.
- 4W. Liu, M. S. Song, B. Kong, Y. Cui, Adv. Mater. 2017, 29, 1603436.
- 5a) M. Liao, C. Wang, Y. Hong, Y. F. Zhang, X. L. Cheng, H. Sun, X. L. Huang, L. Ye, J. X. Wu, X. Shi, X. Y. Kang, X. F. Zhou, J. W. Wang, P. Z. Li, X. M. Sun, P. N. Chen, B. J. Wang, Y. G. Wang, Y. Y. Xia, Y. H. Cheng, H. S. Peng, Nat. Nanotechnol. 2022, 17, 372; b) H. Yang, T. Z. Xiong, Z. X. Zhu, R. Xiao, X. C. Yao, Y. C. Huang, M. S. Balogun, Carbon Energy 2022, 4, 820.
- 6a) W. J. Song, M. Kong, S. Cho, S. Lee, J. Kwon, H. B. Son, J. H. Song, D. G. Lee, G. Song, S. Y. Lee, S. Jung, S. Park, U. Jeong, Adv. Funct. Mater. 2020, 30, 2003608; b) W. J. Song, C. Hwang, S. Lee, M. Kong, J. Kim, H. K. Park, H. B. Son, G. Park, S. Cho, J. H. Song, H. S. Kim, U. Jeong, T. J. Shin, H. K. Song, S. Park, Adv. Funct. Mater. 2020, 30, 2004137; c) M. Gu, W. J. Song, J. Hong, S. Y. Kim, T. J. Shin, N. A. Kotov, S. Park, B. S. Kim, Sci. Adv. 2019, 5, eaaw1879.
- 7a) D. H. Wang, C. P. Han, F. N. Mo, Q. Yang, Y. W. Zhao, Q. Li, G. J. Liang, B. B. Dong, C. Y. Zhi, Energy Storage Mater. 2020, 28, 264; b) A. M. Gaikwad, B. V. Khau, G. Davies, B. Hertzberg, D. A. Steingart, A. C. Arias, Adv. Energy Mater. 2015, 5, 1401389.
- 8C. Y. Hwang, W. J. Song, J. G. Han, S. Bae, G. Song, N. S. Choi, S. Park, H. K. Song, Adv. Mater. 2018, 30, 1705445.
- 9Y. F. Zhang, F. Z. Li, K. Yang, X. Liu, Y. G. Chen, Z. Q. Lao, K. C. Mai, Z. S. Zhang, Adv. Funct. Mater. 2021, 31, 2100434.
- 10a) L. L. Lu, Y. Y. Lu, Z. J. Xiao, T. W. Zhang, F. Zhou, T. Ma, Y. Ni, H. B. Yao, S. H. Yu, Y. Cui, Adv. Mater. 2018, 30, 1706745; b) N. Y. Kim, J. Moon, M. H. Ryou, S. H. Kim, J. H. Kim, J. M. Kim, J. Bang, S. Y. Lee, Adv. Energy Mater. 2022, 12, 2102109; c) Y. D. Kuang, C. J. Chen, D. Kirsch, L. B. Hu, Adv. Energy Mater. 2019, 9, 1901457.
- 11M. S. Balogun, H. Yang, Y. Luo, W. T. Qiu, Y. C. Huang, Z. Q. Liu, Y. X. Tong, Energy Environ. Sci. 2018, 11, 1859.
- 12a) K. V. Pochivalov, A. V. Basko, T. N. Lebedeva, A. N. Ilyasova, M. Y. Yurov, R. Y. Golovanov, V. V. Artemov, V. V. Volkov, A. A. Ezhov, A. V. Volkov, Y. V. Kudryavtsev, Mater. Today Commun. 2021, 28, 102558; b) Y. H. Tang, Y. K. Lin, W. Z. Ma, X. L. Wang, J. Membrane Sci. 2021, 639, 119759; c) J. T. Lee, C. Jo, M. De Volder, Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 21155.
- 13a) J. Chang, Q. Y. Huang, Z. J. Zheng, Joule 2020, 4, 1346; b) H. Cha, J. Kim, Y. Lee, J. Cho, M. Park, Small 2018, 14, 1702989.
- 14L. N. Mizerovskii, K. V. Pochivalov, V. V. Afanas'eva, Polym. Sci. Ser. -A 2010, 52, 973.
- 15D. L. Wood, J. L. Li, C. Daniel, J. Power Sources 2015, 275, 234.
- 16Z. C. Liu, X. H. Yuan, S. S. Zhang, J. Wang, Q. H. Huang, N. F. Yu, Y. S. Zhu, L. J. Fu, F. X. Wang, Y. H. Chen, Y. P. Wu, NPG Asia Mater 2019, 11, 1.
- 17J. Peng, G. J. Snyder, Science 2019, 366, 690.
- 18X. Ge, S. K. Cao, Z. S. Lv, Z. Q. Zhu, Y. X. Tang, H. R. Xia, H. W. Zhang, J. Q. Wei, W. Zhang, Y. Y. Zhang, Y. Zeng, X. D. Chen, Adv. Mater. 2022, 34, 2206797.
- 19a) N. Nitta, F. X. Wu, J. T. Lee, G. Yushin, Mater. Today 2015, 18, 252; b) K. Zaghib, M. Dontigny, A. Guerfi, P. Charest, I. Rodrigues, A. Mauger, C. M. Julien, J. Power Sources 2011, 196, 3949.
- 20J. Kim, S. Park, S. Hwang, W. S. Yoon, J. Electrochem. Sci. Technol. 2022, 13, 19.
- 21a) S. H. Zhou, P. Huang, T. Z. Xiong, F. Yang, H. Yang, Y. C. Huang, D. Li, J. Q. Deng, M. S. Balogun, Small 2021, 17, 2100778; b) G. Li, T. Ouyang, T. Z. Xiong, Z. Jiang, D. Adekoya, Y. Wu, Y. C. Huang, M. S. Balogun, Carbon 2021, 174, 1.
- 22J. P. Schmidt, T. Chrobak, M. Ender, J. Illig, D. Klotz, E. Ivers-Tiffee, J. Power Sources 2011, 196, 5342.
- 23a) S. H. Kim, N. Y. Kim, U. J. Choe, J. M. Kim, Y. G. Lee, S. Y. Lee, Adv. Energy Mater. 2021, 11, 2100531; b) M. H. Ryou, S. H. Kim, S. W. Kim, S. Y. Lee, Energy Environ. Sci. 2022, 15, 2581; c) M. S. Balogun, Y. X. Zeng, W. T. Qiu, Y. Luo, A. Onasanya, T. K. Olaniyi, Y. X. Tong, J. Mater. Chem. A 2016, 4, 9844.
- 24a) S. H. Ha, K. H. Shin, H. W. Park, Y. J. Lee, Small 2018, 14, 1703418; b) W. Shen, K. Li, Y. Y. Lv, T. Xu, D. Wei, Z. F. Liu, Adv. Energy Mater. 2020, 10, 1904281; c) Y. C. Huang, H. Yang, T. Z. Xiong, D. Adekoya, W. T. Qiu, Z. M. Wang, S. Q. Zhang, M. S. Balogun, Energy Storage Mater. 2020, 25, 41; d) H. R. Lu, J. Hagberg, G. Lindbergh, A. Cornell, Nano Energy 2017, 39, 140; e) J. H. Han, K. H. Shin, Y. J. Lee, ACS Appl. Mater. Interfaces 2021, 13, 6375; f) Q. Y. Xia, M. Z. Ni, M. H. Chen, H. Xia, J. Mater. Chem. A 2019, 7, 6187; g) X. L. Yu, J. J. Deng, X. Yang, J. Li, Z. H. Huang, B. H. Li, F. Y. Kang, Nano Energy 2020, 67, 104256.