Self-Assembly of Delta-Formamidinium Lead Iodide Nanoparticles to Nanorods: Study of Memristor Properties and Resistive Switching Mechanism
Chinnadurai Muthu
Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 India
Search for more papers by this authorA. N. Resmi
Department of Physics, Indian Institute of Space Science and Technology (IIST), Thiruvananthapuram, 695 547 India
Search for more papers by this authorAvija Ajayakumar
Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 India
Search for more papers by this authorN. E. Aswathi Ravindran
Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019 India
Search for more papers by this authorG. Dayal
Department of Physics, Indian Institute of Space Science and Technology (IIST), Thiruvananthapuram, 695 547 India
Search for more papers by this authorCorresponding Author
K. B. Jinesh
Department of Physics, Indian Institute of Space Science and Technology (IIST), Thiruvananthapuram, 695 547 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorKonrad Szaciłowski
Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, Krakow, 30 059 Poland
Search for more papers by this authorCorresponding Author
Chakkooth Vijayakumar
Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorChinnadurai Muthu
Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 India
Search for more papers by this authorA. N. Resmi
Department of Physics, Indian Institute of Space Science and Technology (IIST), Thiruvananthapuram, 695 547 India
Search for more papers by this authorAvija Ajayakumar
Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 India
Search for more papers by this authorN. E. Aswathi Ravindran
Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019 India
Search for more papers by this authorG. Dayal
Department of Physics, Indian Institute of Space Science and Technology (IIST), Thiruvananthapuram, 695 547 India
Search for more papers by this authorCorresponding Author
K. B. Jinesh
Department of Physics, Indian Institute of Space Science and Technology (IIST), Thiruvananthapuram, 695 547 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorKonrad Szaciłowski
Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, Krakow, 30 059 Poland
Search for more papers by this authorCorresponding Author
Chakkooth Vijayakumar
Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019 India
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
In the quest for advanced memristor technologies, this study introduces the synthesis of delta-formamidinium lead iodide (δ-FAPbI3) nanoparticles (NPs) and their self-assembly into nanorods (NRs). The formation of these NRs is facilitated by iodide vacancies, promoting the fusion of individual NPs at higher concentrations. Notably, these NRs exhibit robust stability under ambient conditions, a distinctive advantage attributed to the presence of capping ligands and a crystal lattice structured around face-sharing octahedra. When employed as the active layer in resistive random-access memory devices, these NRs demonstrate exceptional bipolar switching properties. A remarkable on/off ratio (105) is achieved, surpassing the performances of previously reported low-dimensional perovskite derivatives and α-FAPbI3 NP-based devices. This enhanced performance is attributed to the low off-state current owing to the reduced number of halide vacancies, intrinsic low dimensionality, and the parallel alignment of NRs on the FTO substrate. This study not only provides significant insights into the development of superior materials for memristor applications but also opens new avenues for exploring low-dimensional perovskite derivatives in advanced electronic devices.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202304787-sup-0001-SuppMat.pdf1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) W. Wan, R. Kubendran, C. Schaefer, S. B. Eryilmaz, W. Zhang, D. Wu, S. Deiss, P. Raina, H. Qian, B. Gao, S. Joshi, H. Wu, H.-S. P. Wong, G. Cauwenberghs, Nature. 2022, 608, 504; b) Q. Cao, W. Lu, X. R. Wang, X. Guan, L. Wang, S. Yan, T. Wu, X. Wang, ACS Appl. Mater. Interfaces. 2020, 12, 42449; c) J. Ouyang, C.-W. Chu, C. R. Szmanda, L. Ma, Y. Yang, Nat. Mater. 2004, 3, 918.
- 2a) Y. Chen, IEEE Trans. Electron Devices. 2020, 67, 1420; b) C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, W. H.-P. Pernice, Nat. Photonics. 2015, 9, 725; c) C. D. Wright, P. Hosseini, J. A.-V. Diosdado, Adv. Mater. 2013, 23, 2248.
- 3a) Q. Liu, S. Gao, L. Xu, W. Yue, C. Zhang, H. Kan, Y. Li, G. Shen, Chem. Soc. Rev. 2022, 51, 3341; b) J. Di, J. Du, Z. Lin, S. F. Liu, J. Ouyang, J. Chang, InfoMat. 2021, 3, 293.
- 4a) D. A. Jacobs, C. M. Wolff, X.-Y. Chin, K. Artuk, C. Ballif, Q. Jeangros, Energy Environ. Sci. 2022, 15, 5324; b) X. Zhang, X. Chen, Y. Chen, N. A. N. Ouedraogo, J. Li, X. Bao, C. B. Han, Y. Shirai, Y. Zhang, H. Yana, Nanoscale Adv. 2021, 3, 6128; c) Y. Ren, H. Ma, W. Wang, Z. Wang, H. Xu, X. Zhao, W. Liu, J. Ma, Y. Liu, Adv. Mater. Technol. 2019, 4, 1800238; d) C. C. Boyd, R. Cheacharoen, T. Leijtens, M. D. McGehee, Chem. Rev. 2019, 119, 3418.
- 5a) A. Ajayakumar, C. Muthu, A. V. Dev, J. K. Pious, C. Vijayakumar, Chem. Asian J. 2022, 17, 202101075; b) J. K. Pious, C. Muthu, C. Vijayakumar, Acc. Chem. Res. 2022, 55, 275; c) H.-P. Wang, S. Li, X. Liu, Z. Shi, X. Fang, J.-H. He, Adv. Mater. 2020, 33, 2003309; d) Y. Liang, F. Li, R. Zheng, Adv. Electron. Mater. 2020, 6, 2000137; e) K. Hong, Q. V. Le, S. Y. Kim, H. W. Jang, J. Mater. Chem. C. 2018, 6, 2189; f) H. Lin, C. Zhou, Y. Tian, T. Siegrist, B. Ma, ACS Energy Lett. 2018, 3, 54.
- 6a) X. Guan, Z. Lei, X. Yu, C.-H. Lin, J.-K. Huang, C.-Y. Huang, L. Hu, F. Li, A. Vinu, J. Yi, T. Wu, Small. 2022, 18, 2203311; b) S. I. Kim, Y. Lee, M. H. Park, G. T. Go, Y. N. Kim, W. T. Xu, H. D. Lee, H. Kim, D. G. Seo, W. Lee, T. W. Lee, Adv. Electron. Mater. 2019, 5, 1900008; c) X. Guan, W. Hu, M. A. Haque, N. Wei, Z. Liu, A. Chen, T. Wu, Adv. Funct. Mater. 2018, 28, 1704665; d) J.-M. Yang, S.-G. Kim, J.-Y. Seo, C. Cuhadar, D.-Y. Son, D. Lee, N.-G. Park, Adv. Electron. Mater. 2018, 4, 1800190; e) J. Y. Seo, J. Choi, H. S. Kim, J. Kim, J. M. Yang, C. Cuhadar, J. S. Han, S. J. Kim, D. Lee, H. W. Jang, N. G. Park, Nanoscale. 2017, 9, 15278; f) D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 7843.
- 7S. Y. Kim, J. M. Yang, E. S. Choi, N. G. Park, Nanoscale. 2019, 11, 14330.
- 8F. Xia, Y. Xu, B. Li, W. Hui, S. Zhang, L. Zhu, Y. Xia, Y. Chen, W. Huang, ACS Appl. Mater. Interfaces. 2020, 12, 15439.
- 9C. Muthu, S. Agarwal, A. Vijayan, P. Hazra, K. B. Jinesh, V. C. Nair, Adv. Mater. Interfaces. 2016, 3, 1600092.
- 10C. Muthu, A. N. Resmi, J. K. Pious, G. Dayal, N. Krishna, K. B. Jinesh, C. Vijayakumar, J. Mater. Chem. C. 2021, 9, 288.
- 11a) B. Hwang, J. S. Lee, Nanoscale. 2018, 10, 8578; b) D. Lee, B. Hwang, J. S. Lee, ACS Appl. Mater. Interfaces. 2019, 11, 20225; c) Q. Li, T. Li, Y. Zhang, Y. Yu, Z. Chen, L. Jin, Y. Li, Y. Yang, H. Zhao, J. Li, J. Yao, Org. Electron. 2020, 77, 105461; d) M.-C. Yen, C.-J. Lee, K.-H. Liu, Y. Peng, J. Leng, T.-H. Chang, C.-C. Chang, K. Tamada, Y.-J. Lee, Nat. Commun. 2021, 12, 4460.
- 12a) G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, Energy Environ. Sci. 2014, 7, 982; b) A. Binek, F. C. Hanusch, P. Docampo, T. Bein, J. Phys. Chem. Lett. 2015, 6, 1249; c) Y. Zhou, J. Kwun, H. F. Garces, S. Pang, N. P. Padture, Chem. Commun. 2016, 52, 7273.
- 13a) K. Ho, M. Wei, E. H. Sargent, G. C. Walker, ACS Energy Lett. 2021, 6, 934; b) F. Fu, S. Pisoni, Q. Jeangros, J. Sastre-Pellicer, M. Kawecki, A. Paracchino, T. Moser, J. Werner, C. Andres, L. Duchêne, P. Fiala, M. Rawlence, S. Nicolay, C. Ballif, A. N. Tiwari, S. Buecheler, Energy Environ. Sci. 2019, 12, 3074.
- 14a) E. J. Yoo, M. Lyu, J.-H. Yun, C. J. Kang, Y. J. Choi, L. Wang, Adv. Mater. 2015, 27, 6170; b) C. Gu, J.-S. Lee, ACS Nano. 2016, 10, 5413.
- 15a) L. Sinatra, J. Pan, O. M. Bakr, Mater. Lett. 2017, 12, 3; b) L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692.
- 16C. C. Stoumpos, C. D. Malliakas, M. G. Kanatzidis, Inorg. Chem. 2013, 52, 9019.
- 17N. Fiuza-Maneiro, K. Sun, I. López-Fernández, S. Gómez-Graña, P. Müller-Buschbaum, L. Polavarapu, ACS Energy Lett. 2023, 8, 1152.
- 18a) J. Liu, X. Zheng, O. F. Mohammed, O. M. Bakr, Acc. Chem. Res. 2022, 55, 262; b) A. Jana, A. Meena, S. A. Patil, Y. Jo, S. Cho, Y. Park, V. G. Sree, H. Kim, H. Im, R. A. Taylor, Prog. Mater. Sci. 2022, 129, 100975; c) J. Liu, K. Song, Y. Shin, X. Liu, J. Chen, K. X. Yao, J. Pan, C. Yang, J. Yin, L.-J. Xu, H. Yang, A. M. El-Zohry, B. Xin, S. Mitra, M. N. Hedhili, I. S. Roqan, O. F. Mohammed, Y. Han, O. M. Bakr, Chem. Mater. 2019, 31, 6642.
- 19N. Soetan, W. R. Erwin, A. M. Tonigan, D. G. Walker, R. Bardhan, J. Phys. Chem. C. 2017, 121, 18186.
- 20a) V. Carpenella, F. Ripanti, E. Stellino, C. Fasolato, A. Nucara, C. Petrillo, L. Malavasi, P. Postorino, J. Phys. Chem. C. 2023, 127, 2440; b) P. Wang, J. Guan, D. T. K. Galeschuk, Y. Yao, C. F. He, S. Jiang, S. Zhang, Y. Liu, M. Jin, C. Jin, Y. Song, J. Phys. Chem. Lett. 2017, 8, 2119.
- 21C. Wang, H. Wu, B. Gao, T. Zhang, Y. Yang, H. Qian, Microelectron. Eng. 2018, 187, 121.
- 22a) B. Hwang, C. Gu, D. Lee, J.-S. Lee, Sci. Rep. 2017, 7, 43794;
b) M. Sasaki, J. Appl. Phys. 2012, 112, 014501.
10.1063/1.4730776 Google Scholar
- 23a) X.-F. Cheng, J. Li, X. Hou, J. Zhou, J.-H. He, H. Li, Q.-F. Xu, N.-J. Li, D.-Y. Chen, J.-M. Lu, Sci. China. Chem. 2019, 62, 753; b) X.-F. Cheng, E.-B. Shi, X. Hou, J. Shu, J.-H. He, H. Li, Q.-F. Xu, N.-J. Li, D.-Y. Chen, J.-M. Lu, Adv. Electron. Mater. 2017, 3, 1700107; c) F.-C. Chiu, Adv. Mater. Sci. Eng. 2014, 578168; d) J. Rivnay, L. H. Jimison, J. E. Northrup, M. F. Toney, R. Noriega, S. Lu, T. J. Marks, A. Facchetti, A. Salleo, Nat. Mater. 2009, 8, 952.
- 24M. A. Gaffar, A. M. Abousehly, A. A. El-Fadl, M. M. Mostafa, J. Phys. D: Appl. Phys. 2005, 38, 577.
- 25C. Zou, J. Zheng, C. Chang, A. Majumdar, L. Y. Lin, Adv. Optical Mater. 2019, 7, 1900558.
- 26a) C. Eames, J. M. Frost, P. R. F. Barnes, B. C. O'Regan, A. Walsh, M. S. Islam, Nat. Commun. 2015, 6, 7497; b) L. McGovern, M. H. Futscher, L. A. Muscarella, B. Ehrler, J. Phys. Chem. Lett. 2020, 11, 7127; c) J. M. Azpiroz, E. Mosconi, J. Bisquert, F. D. Angelis, Energy Environ. Sci. 2015, 8, 2118.
- 27J.-M. Yang, E.-S. Choi, S.-Y. Kim, J.-H. Kim, J.-H. Park, N.-G. Park, Nanoscale. 2019, 11, 6453.
- 28a) B. Hwang, J.-S. Lee, Adv. Mater. 2017, 29, 1701048; b) X. Zhu, J. Lee, W. Lu, Adv. Mater. 2017, 29, 1700527.
- 29D. P. Nenon, K. Pressler, J. Kang, B. A. Koscher, J. H. Olshansky, W. T. Osowiecki, M. A. Koc, L.-W. Wang, A. P. Alivisatos, J. Am. Chem. Soc. 2018, 140, 17760.
- 30a) L. Scalon, R. Szostak, F. L. Araújo, K. F. Adriani, J. F. R. V. Silveira, W. X. C. Oliveira, J. L. F. D. Silva, C. C. Oliveira, A. F. Nogueira, JACS Au. 2022, 2, 1306; b) C. Li, A. Guerrero, S. Huettner, J. Bisquert, Nat. Commun. 2018, 9, 5113; c) B. S. T. Birkhold, J. T. Precht, H. Liu, R. Giridharagopal, G. E. Eperon, L. Schmidt-Mende, X. Li, D. S. Ginger, ACS Energy Lett. 2018, 3, 1279.
- 31a) J.-M. Yang, E.-S. Choi, S.-Y. Kim, J.-H. Kim, J.-H. Park, N.-G. Park, Nanoscale. 2019, 11, 6453; b) X. Cao, X. Li, X. Gao, W. Yu, X. Liu, Y. Zhang, L. Chen, X. Cheng, J. Appl. Phys. 2009, 106, 073723.
- 32a) M. Kazes, T. Udayabhaskararao, S. Dey, D. Oron, Acc. Chem. Res. 2021, 54, 1409; b) F. Haydous, J. M. Gardner, U. B. Cappel, J. Mater. Chem. A. 2021, 9, 23419.
- 33H. Tian, L. Zhao, X. Wang, Y. W. Yeh, N. Yao, B. P. Rand, T. L. Ren, ACS Nano. 2017, 11, 12247.
- 34X. F. Cheng, X. Hou, J. Zhou, B. J. Gao, J. H. He, H. Li, Q. F. Xu, N. J. Li, D. Y. Chen, J. M. Lu, Small. 2018, 14, 1703667.
- 35Z. Xiong, W. Hu, Y. She, Q. Lin, L. Hu, X. Tang, K. Sun, ACS Appl. Mater. Interfaces. 2019, 11, 30037.
- 36S. Ge, X. Guan, Y. Wang, C. H. Lin, Y. Cui, Y. Huang, X. Zhang, R. Zhang, X. Yang, T. Wu, Adv. Funct. Mater. 2020, 30, 2002.
- 37S. Poddar, Y. Zhang, Y. Zhu, Q. Zhang, Z. Fan, Nanoscale. 2021, 13, 6184.
- 38J. C. Li, Y. Zhang, C. Y. Yao, N. Qin, R. Q. Chen, D. H. Bao, Adv. Electron. Mater. 2021, 8, 2101094.
- 39X. Song, H. Yin, Q. Chang, Y. Qian, C. Lyu, H. Min, X. Zong, C. Liu, Y. Fang, Z. Cheng, T. Qin, W. Huang, L. Wang, Research. 2021, 9760729, 9.
- 40T. Paul, P. K. Sarkar, S. Maiti, A. Sahoo, K. K. Chattopadhyay, Dalton Trans. 2022, 51, 3864.
- 41X. Cao, Z. Ma, T. Cheng, Y. Wang, Z. Shi, J. Wang, L. Zhang, Energy Environ. Mater. 2023, 6, 12419.
- 42S.-Y. Kim, D.-A. Park, N.-G. Park, ACS Appl. Electron. Mater. 2022, 4, 2388.
- 43K. Yan, B. X. Chen, H. W. Hu, S. Chen, B. Dong, X. Gao, X. Y. Xiao, J. B. Zhou, D. C. Zou, Adv. Electron. Mater. 2016, 2, 1600160.
- 44Y. Q. Hu, S. F. Zhang, X. L. Miao, L. S. Su, F. Bai, T. Qiu, J. Z. Liu, G. L. Yuan, Adv. Mater. Interfaces. 2017, 4, 1700131.
- 45J. Zhao, S. J. Li, W. C. Tong, G. W. Chen, Y. H. Xiao, S. J. Lei, B. C. Cheng, Adv. Electron. Mater. 2018, 4, 1800206.
- 46Z. Hong, J. Zhao, S. Li, B. Cheng, Y. Xiao, S. Lei, Nanoscale. 2019, 11, 3360.
- 47Z. L. Chen, Y. T. Zhang, Y. Yu, M. X. Cao, Y. L. Che, L. F. Jin, Y. F. Li, Q. Y. Li, T. T. Li, H. T. Dai, J. B. Yang, J. Q. Yao, Appl. Phys. Lett. 2019, 114, 181103.
- 48Z. L. Chen, Y. T. Zhang, Y. Yu, Y. L. Che, L. F. Jin, Y. F. Li, Q. Y. Li, T. T. Li, H. T. Dai, J. Q. Yao, Opt. Mater. 2019, 90, 12.
- 49J. Y. Mao, Z. Zheng, Z. Y. Xiong, P. Huang, G. L. Ding, R. P. Wang, Z. P. Wang, J. Q. Yang, Y. Zhou, T. Y. Zhai, S. T. Han, Nano Energy. 2020, 71, 104616.
- 50P. Shu, X. F. Cao, Y. Q. Du, J. K. Zhou, J. J. Zhou, S. G. Xu, Y. L. Liu, S. K. Cao, J. Mater. Chem. C. 2020, 8, 12865.
- 51S. Poddar, Y. Zhang, L. Gu, D. Zhang, Q. Zhang, S. Yan, M. Kam, S. Zhang, Z. Song, W. Hu, L. Liao, Z. Fan, Nano Lett. 2021, 21, 5036.
- 52Y. Zhang, S. Poddar, H. Huang, L. Gu, Q. Zhang, Y. Zhou, S. Yan, S. Zhang, Z. Song, B. Huang, G. Shen, Z. Fan, Sci. Adv. 2021, 7, eabg3788.
- 53a) S. Svanström, T. J. Jacobsson, G. Boschloo, E. M. J. Johansson, H. Rensmo, U. B. Cappel, ACS Appl. Mater. Interfaces. 2020, 12, 7212; b) Y. Kato, L. K. Ono, M. V. Lee, S. Wang, S. R. Raga, Y. Qi, Adv. Mater. Interfaces. 2015, 2, 1500195.