Building Atomic Scale and Dense Fe─N4 Edge Sites of Highly Efficient Fe─N─C Oxygen Reduction Catalysts Using a Sacrificial Bimetallic Pyrolysis Strategy
Zhaoyan Luo
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 P. R. China
Search for more papers by this authorTingyi Zhou
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 P. R. China
Search for more papers by this authorYi Guan
Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B9 Canada
Search for more papers by this authorLei Zhang
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 P. R. China
Search for more papers by this authorQianling Zhang
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 P. R. China
Search for more papers by this authorChuanxin He
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 P. R. China
Search for more papers by this authorXueliang Sun
Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B9 Canada
Search for more papers by this authorCorresponding Author
Xiangzhong Ren
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 P. R. China
E-mail: [email protected]
Search for more papers by this authorZhaoyan Luo
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 P. R. China
Search for more papers by this authorTingyi Zhou
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 P. R. China
Search for more papers by this authorYi Guan
Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B9 Canada
Search for more papers by this authorLei Zhang
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 P. R. China
Search for more papers by this authorQianling Zhang
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 P. R. China
Search for more papers by this authorChuanxin He
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 P. R. China
Search for more papers by this authorXueliang Sun
Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B9 Canada
Search for more papers by this authorCorresponding Author
Xiangzhong Ren
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
Replacing high-cost and scarce platinum (Pt) with transition metal and nitrogen co-doped carbon (M/N/C, M = Fe, Co, Mn, and so on) catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells has largely been impeded by the unsatisfactory ORR activity of M/N/C due to the low site utilization and inferior intrinsic activity of the M─N4 active center. Here, these limits are overcome by using a sacrificial bimetallic pyrolysis strategy to synthesize Fe─N─C catalyst by implanting the Cd ions in the backbone of ZIF-8, leading to exposure of inaccessible FeN4 edge sites (that is, increasing active site density (SD)) and high fast mass transport at the catalyst layer of cathode. As a result, the final obtained Fe(Cd)─N─C catalyst has an active site density of 33.01 µmol g−1 (with 33.01% site utilization) over 5.8 times higher than that of Fe─N─C catalyst. Specially, the optimal catalyst delivers a high ORR performance with a half-wave potential of 0.837 (vs RHE) in a 0.1 m HClO4 electrolyte, which surpasses most of Fe-based catalysts.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202304750-sup-0001-SuppMat.pdf2.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Q. Cheng, S. Yang, C. Fu, L. Zou, Z. Zou, Z. Jiang, J. Zhang, H. Yang, Energy Environ. Sci. 2022, 15, 278.
- 2a) L. Gao, X. Li, Z. Yao, H. Bai, Y. Lu, C. Ma, S. Lu, Z. Peng, J. Yang, A. Pan, H. Huang, J. Am. Chem. Soc. 2019, 141, 18083; b) L. Zhang, Y. Zhao, M. N. Banis, K. Adair, Z. Song, L. Yang, M. Markiewicz, J. Li, S. Wang, R. Li, S. Ye, X. Sun, Nano Energy 2019, 60, 111; c) M. Xie, Z. Lyu, R. Chen, M. Shen, Z. Cao, Y. Xia, J. Am. Chem. Soc. 2021, 143, 8509; d) L. Huang, X. Zheng, G. Gao, H. Zhang, K. Rong, J. Chen, Y. Liu, X. Zhu, W. Wu, Y. Wang, J. Wang, S. Dong, J. Am. Chem. Soc. 2021, 143, 6933; e) Z. P. Wu, D. T. Caracciolo, Y. Maswadeh, J. Wen, Z. Kong, S. Shan, J. A. Vargas, S. Yan, E. Hopkins, K. Park, A. Sharma, Y. Ren, V. Petkov, L. Wang, C. J. Zhong, Nat. Commun. 2021, 12, 859.
- 3a) T. Al-Zoubi, Y. Zhou, X. Yin, B. Janicek, C. Sun, C. E. Schulz, X. Zhang, A. A. Gewirth, P. Huang, P. Zelenay, H. Yang, J. Am. Chem. Soc. 2020, 142, 5477; b) T. Sun, S. Zhao, W. Chen, D. Zhai, J. Dong, Y. Wang, S. Zhang, A. Han, L. Gu, R. Yu, X. Wen, H. Ren, L. Xu, C. Chen, Q. Peng, D. Wang, Y. Li, Proc. Natl. Acad. Sci. USA 2018, 115, 12692.
- 4F. Xiao, X. Liu, C. J. Sun, I. Hwang, Q. Wang, Z. Xu, Y. Wang, S. Zhu, H. W. Wu, Z. Wei, L. Zheng, D. Cheng, M. Gu, G. L. Xu, K. Amine, M. Shao, Nano Lett. 2021, 21, 3633.
- 5E. Luo, Y. Chu, J. Liu, Z. Shi, S. Zhu, L. Gong, J. Ge, C. H. Choi, C. Liu, W. Xing, Energy Environ. Sci. 2021, 14, 2158.
- 6X. Xie, C. He, B. Li, Y. He, D. A. Cullen, E. C. Wegener, A. J. Kropf, U. Martinez, Y. Cheng, M. H. Engelhard, M. E. Bowden, M. Song, T. Lemmon, X. S. Li, Z. Nie, J. Liu, D. J. Myers, P. Zelenay, G. Wang, G. Wu, V. Ramani, Y. Shao, Nat. Catal. 2020, 3, 1044.
- 7Z. Wang, X. Jin, C. Zhu, Y. Liu, H. Tan, R. Ku, Y. Zhang, L. Zhou, Z. Liu, S. J. Hwang, H. J. Fan, Adv. Mater. 2021, 9, 2104718.
10.1002/adma.202104718 Google Scholar
- 8J. Li, L. Jiao, E. Wegener, L. L. Richard, E. Liu, A. Zitolo, M. T. Sougrati, S. Mukerjee, Z. Zhao, Y. Huang, F. Yang, S. Zhong, H. Xu, A. J. Kropf, F. Jaouen, D. J. Myers, Q. Jia, J. Am. Chem. Soc. 2020, 142, 1417.
- 9H. Adabi, A. Shakouri, N. Ul Hassan, J. R. Varcoe, B. Zulevi, A. Serov, J. R. Regalbuto, W. E. Mustain, Nat. Energy 2021, 6, 834.
- 10a) C. H. Choi, H. K. Lim, M. W. Chung, J. C. Park, H. Shin, H. Kim, S. I. Woo, J. Am. Chem. Soc. 2014, 136, 9070; b) C. H. Choi, C. Baldizzone, G. Polymeros, E. Pizzutilo, O. Kasian, A. K. Schuppert, N. Ranjbar Sahraie, M.-T. Sougrati, K. J. J. Mayrhofer, F. Jaouen, ACS Catal. 2016, 6, 3136; c) J. Li, M. T. Sougrati, A. Zitolo, J. M. Ablett, I. C. Oğuz, T. Mineva, I. Matanovic, P. Atanassov, Y. Huang, I. Zenyuk, A. Di Cicco, K. Kumar, L. Dubau, F. Maillard, G. Dražić, F. Jaouen, Nat. Catal. 2020, 4, 10.
- 11Q. Zhao, Y. Wang, W.-H. Lai, F. Xiao, Y. Lyu, C. Liao, M. Shao, Energy Environ. Sci. 2021, 14, 5444.
- 12a) J. Li, M. Chen, D. A. Cullen, S. Hwang, M. Wang, B. Li, K. Liu, S. Karakalos, M. Lucero, H. Zhang, C. Lei, H. Xu, G. E. Sterbinsky, Z. Feng, D. Su, K. L. More, G. Wang, Z. Wang, G. Wu, Nat. Catal. 2018, 1, 935; b) X. Yang, Y. Wang, X. Wang, B. Mei, E. Luo, Y. Li, Q. Meng, Z. Jin, Z. Jiang, C. Liu, J. Ge, W. Xing, Angew. Chem., Int. Ed. 2021, 60, 26177.
- 13N. D. Leonard, S. Wagner, F. Luo, J. Steinberg, W. Ju, N. Weidler, H. Wang, U. I. Kramm, P. Strasser, ACS Catal. 2018, 8, 1640.
- 14a) L. Zhao, Y. Zhang, L. B. Huang, X. Z. Liu, Q. H. Zhang, C. He, Z. Y. Wu, L. J. Zhang, J. Wu, W. Yang, L. Gu, J. S. Hu, L. J. Wan, Nat. Commun. 2019, 10, 1278; b) X. Xie, L. Shang, X. Xiong, R. Shi, T. Zhang, Adv. Energy Mater. 2021, 12, 2102688.
- 15a) Q. Wang, Y. Yang, F. Sun, G. Chen, J. Wang, L. Peng, W. T. Chen, L. Shang, J. Zhao, D. Sun-Waterhouse, T. Zhang, G. I. N. Waterhouse, Adv. Energy Mater. 2021, 11, 2100219; b) Y. Zhou, X. Tao, G. Chen, R. Lu, D. Wang, M. X. Chen, E. Jin, J. Yang, H. W. Liang, Y. Zhao, X. Feng, A. Narita, K. Mullen, Nat. Commun. 2020, 11, 5892.
- 16N. R. Sahraie, U. I. Kramm, J. Steinberg, Y. Zhang, A. Thomas, T. Reier, J. P. Paraknowitsch, P. Strasser, Nat. Commun. 2015, 6, 8618.
- 17G. Yang, J. Zhu, P. Yuan, Y. Hu, G. Qu, B. A. Lu, X. Xue, H. Yin, W. Cheng, J. Cheng, W. Xu, J. Li, J. Hu, S. Mu, J. N. Zhang, Nat. Commun. 2021, 12, 1734.
- 18Z. Song, L. Zhang, K. Doyle-Davis, X. Fu, J. L. Luo, X. Sun, Adv. Energy Mater. 2020, 10, 2001561.
- 19S. Wang, P. Zhou, L. Zhou, F. Lv, Y. Sun, Q. Zhang, L. Gu, H. Yang, S. Guo, Nano Lett. 2021, 21, 4262.
- 20a) M. Xiao, Y. Chen, J. Zhu, H. Zhang, X. Zhao, L. Gao, X. Wang, J. Zhao, J. Ge, Z. Jiang, S. Chen, C. Liu, W. Xing, J. Am. Chem. Soc. 2019, 141, 17763; b) M. Xiao, L. Gao, Y. Wang, X. Wang, J. Zhu, Z. Jin, C. Liu, H. Chen, G. Li, J. Ge, Q. He, Z. Wu, Z. Chen, W. Xing, J. Am. Chem. Soc. 2019, 141, 19800.
- 21M. Xiao, J. Zhu, G. Li, N. Li, S. Li, Z. P. Cano, L. Ma, P. Cui, P. Xu, G. Jiang, H. Jin, S. Wang, T. Wu, J. Lu, A. Yu, D. Su, Z. Chen, Angew. Chem., Int. Ed. 2019, 58, 9640.
- 22M. Xiao, J. Zhu, L. Ma, Z. Jin, J. Ge, X. Deng, Y. Hou, Q. He, J. Li, Q. Jia, S. Mukerjee, R. Yang, Z. Jiang, D. Su, C. Liu, W. Xing, ACS Catal. 2018, 8, 2824.
- 23V. Armel, S. Hindocha, F. Salles, S. Bennett, D. Jones, F. Jaouen, J. Am. Chem. Soc. 2017, 139, 453.
- 24H. Yin, P. Yuan, B.-A. Lu, H. Xia, K. Guo, G. Yang, G. Qu, D. Xue, Y. Hu, J. Cheng, S. Mu, J.-N. Zhang, ACS Catal. 2021, 11, 12754.
- 25B. Xu, S. Li, L. Zheng, Y. Liu, A. Han, J. Zhang, Z. Huang, H. Xie, K. Fan, L. Gao, H. Liu, Adv. Mater. 2022, 11, 2107088.
10.1002/adma.202107088 Google Scholar
- 26Y. Ha, B. Fei, X. Yan, H. Xu, Z. Chen, L. Shi, M. Fu, W. Xu, R. Wu, Adv. Energy Mater. 2020, 10, 2002592.
- 27Y. He, S. Liu, C. Priest, Q. Shi, G. Wu, Chem. Soc. Rev. 2020, 49, 3484.
- 28Y. J. Sa, D. J. Seo, J. Woo, J. T. Lim, J. Y. Cheon, S. Y. Yang, J. M. Lee, D. Kang, T. J. Shin, H. S. Shin, H. Y. Jeong, C. S. Kim, M. G. Kim, T. Y. Kim, S. H. Joo, J. Am. Chem. Soc. 2016, 138, 15046.
- 29G. Chen, P. Liu, Z. Liao, F. Sun, Y. He, H. Zhong, T. Zhang, E. Zschech, M. Chen, G. Wu, J. Zhang, X. Feng, Adv. Mater. 2020, 32, 1907399.
- 30T. Wang, Y. He, Y. Liu, F. Guo, X. Li, H. Chen, H. Li, Z. Lin, Nano Energy 2020, 79, 105487.
10.1016/j.nanoen.2020.105487 Google Scholar
- 31Y. Mun, S. Lee, K. Kim, S. Kim, S. Lee, J. W. Han, J. Lee, J. Am. Chem. Soc. 2019, 141, 6254.
- 32J. Qin, C. Xi, R. Zhang, T. Liu, P. Zou, D. Wu, Q. Guo, J. Mao, H. Xin, J. Yang, ACS Catal. 2021, 11, 4486.
- 33A. Han, X. Wang, K. Tang, Z. Zhang, C. Ye, K. Kong, H. Hu, L. Zheng, P. Jiang, C. Zhao, Q. Zhang, D. Wang, Y. Li, Angew. Chem., Int. Ed. 2021, 60, 19262.
- 34M. Chen, X. Li, F. Yang, B. Li, T. Stracensky, S. Karakalos, S. Mukerjee, Q. Jia, D. Su, G. Wang, G. Wu, H. Xu, ACS Catal. 2020, 10, 10523.
- 35Y. Zhu, S. F. Yuk, J. Zheng, M. T. Nguyen, M. S. Lee, J. Szanyi, L. Kovarik, Z. Zhu, M. Balasubramanian, V. A. Glezakou, J. L. Fulton, J. A. Lercher, R. Rousseau, O. Y. Gutierrez, J. Am. Chem. Soc. 2021, 143, 5540.
- 36J. Gu, C. S. Hsu, L. Bai, H. M. Chen, X. Hu, Science 2019, 364, 1091.
- 37X. Ao, W. Zhang, B. Zhao, Y. Ding, G. Nam, L. Soule, A. Abdelhafiz, C. Wang, M. Liu, Energy Environ. Sci. 2020, 13, 3032.
- 38L. Gong, H. Zhang, Y. Wang, E. Luo, K. Li, L. Gao, Y. Wang, Z. Wu, Z. Jin, J. Ge, Z. Jiang, C. Liu, W. Xing, Angew. Chem., Int. Ed. 2020, 59, 13923.
- 39Y. Yan, S. Liang, X. Wang, M. Zhang, S. M. Hao, X. Cui, Z. Li, Z. Lin, Proc. Natl. Acad. Sci. USA 2021, 118, 1091.
- 40D. Menga, J. L. Low, Y. S. Li, I. Arcon, B. Koyuturk, F. Wagner, F. Ruiz-Zepeda, M. Gaberscek, B. Paulus, T. P. Fellinger, J. Am. Chem. Soc. 2021, 143, 18010.
- 41M. Primbs, Y. Sun, A. Roy, D. Malko, A. Mehmood, M.-T. Sougrati, P.-Y. Blanchard, G. Granozzi, T. Kosmala, G. Daniel, P. Atanassov, J. Sharman, C. Durante, A. Kucernak, D. Jones, F. Jaouen, P. Strasser, Energy Environ. Sci. 2020, 13, 2480.
- 42X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng, W. Yan, H. Wang, M. Xu, J. Shui, Nat. Catal. 2019, 2, 259.
- 43L. Jiao, J. Li, L. L. Richard, Q. Sun, T. Stracensky, E. Liu, M. T. Sougrati, Z. Zhao, F. Yang, S. Zhong, H. Xu, S. Mukerjee, Y. Huang, D. A. Cullen, J. H. Park, M. Ferrandon, D. J. Myers, F. Jaouen, Q. Jia, Nat. Mater. 2021, 20, 1385.
- 44D. Malko, A. Kucernak, T. Lopes, J. Am. Chem. Soc. 2016, 138, 16056.
- 45a) L. Jiao, R. Zhang, G. Wan, W. Yang, X. Wan, H. Zhou, J. Shui, S. H. Yu, H. L. Jiang, Nat. Commun. 2020, 11, 2831; b) L. Jiao, J. Zhu, Y. Zhang, W. Yang, S. Zhou, A. Li, C. Xie, X. Zheng, W. Zhou, S. H. Yu, H. L. Jiang, J. Am. Chem. Soc. 2021, 143, 19417; c) J. Li, S. Ghoshal, W. Liang, M.-T. Sougrati, F. Jaouen, B. Halevi, S. McKinney, G. McCool, C. Ma, X. Yuan, Z.-F. Ma, S. Mukerjee, Q. Jia, Energy Environ. Sci. 2016, 9, 2418; d) T. Marshall-Roth, N. J. Libretto, A. T. Wrobel, K. J. Anderton, M. L. Pegis, N. D. Ricke, T. V. Voorhis, J. T. Miller, Y. Surendranath, Nat. Commun. 2020, 11, 5283.
- 46S. Liu, M. Wang, X. Yang, Q. Shi, Q. Zhi, M. Lucero, Q. Ma, K. L. More, D. A. Cullen, Z. Feng, G. Wu, Angew. Chem., Int. Ed. 2020, 59, 21698.
- 47a) Z. Lu, B. Wang, Y. Hu, W. Liu, Y. Zhao, R. Yang, Z. Li, J. Luo, B. Chi, Z. Jiang, M. Li, S. Mu, S. Liao, J. Zhang, X. Sun, Angew. Chem., Int. Ed. 2019, 58, 2622; b) A. Kumar, V. Q. Bui, J. Lee, L. Wang, A. R. Jadhav, X. Liu, X. Shao, Y. Liu, J. Yu, Y. Hwang, H. T. D. Bui, S. Ajmal, M. G. Kim, S. G. Kim, G. S. Park, Y. Kawazoe, H. Lee, Nat. Commun. 2021, 12, 6766.
- 48J. Li, H. Zhang, W. Samarakoon, W. Shan, D. A. Cullen, S. Karakalos, M. Chen, D. Gu, K. L. More, G. Wang, Z. Feng, Z. Wang, G. Wu, Angew. Chem., Int. Ed. 2019, 58, 18971.
- 49L. Yang, X. Zhang, L. Yu, J. Hou, Z. Zhou, R. Lv, Adv. Mater. 2021, 34, 2105410.
- 50a) Q. Wang, Y. Lei, Y. Wang, Y. Liu, C. Song, J. Zeng, Y. Song, X. Duan, D. Wang, Y. Li, Energy Environ. Sci. 2020, 13, 1593; b) H. Hu, J. Wang, B. Cui, X. Zheng, J. Lin, Y. Deng, X. Han, Angew. Chem., Int. Ed. 2021, 61, e202114441.
- 51a) J. Liang, Z. Zhao, N. Li, X. Wang, S. Li, X. Liu, T. Wang, G. Lu, D. Wang, B. J. Hwang, Y. Huang, D. Su, Q. Li, Adv. Energy Mater. 2020, 10, 2000179; <number>b) L. Wang, C. Zhu, M. Xu, C. Zhao, J. Gu, L. Cao, X. Zhang, Z. Sun, S. Wei, W. Zhou, W. X. Li, J. Lu, J. Am. Chem. Soc. 2021, 143, 18854; c) Z. Wang, J. Huang, L. Wang, Y. Liu, W. Liu, S. Zhao, Z. Q. Liu, Angew. Chem., Int. Ed. 2021, 61, e202114696.
- 52H. Huang, D. Yu, F. Hu, S. C. Huang, J. Song, H. Y. Chen, L. L. Li, S. Peng, Angew. Chem., Int. Ed. 2021, 61, e202116068;
10.1002/anie.202116068 Google Scholar
- 53Z. Zhu, H. Yin, Y. Wang, C. H. Chuang, L. Xing, M. Dong, Y. R. Lu, G. Casillas-Garcia, Y. Zheng, S. Chen, Y. Dou, P. Liu, Q. Cheng, H. Zhao, Adv. Mater. 2020, 32, 2004670.
- 54E. Luo, H. Zhang, X. Wang, L. Gao, L. Gong, T. Zhao, Z. Jin, J. Ge, Z. Jiang, C. Liu, W. Xing, Angew. Chem., Int. Ed. 2019, 58, 12469.