General Synthesis of Single-Crystal Spinel Cathodes with the Tailored Orientation of Exposed Crystal Planes for Advanced Lithium-Ion Batteries
Corresponding Author
Peiyu Hou
School of Physics and Technology, University of Jinan, Jinan, Shandong Province, 250022 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorZezhou Lin
Department of Applied Physics and Research Institute of Smart Energy, The Hong Kong Polytechnic University, Hong Kong, China
Search for more papers by this authorCorresponding Author
Feng Li
School of Physics and Technology, University of Jinan, Jinan, Shandong Province, 250022 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xijin Xu
School of Physics and Technology, University of Jinan, Jinan, Shandong Province, 250022 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Peiyu Hou
School of Physics and Technology, University of Jinan, Jinan, Shandong Province, 250022 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorZezhou Lin
Department of Applied Physics and Research Institute of Smart Energy, The Hong Kong Polytechnic University, Hong Kong, China
Search for more papers by this authorCorresponding Author
Feng Li
School of Physics and Technology, University of Jinan, Jinan, Shandong Province, 250022 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xijin Xu
School of Physics and Technology, University of Jinan, Jinan, Shandong Province, 250022 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
The spinel Mn-based cathodes with 3D Li+ diffusion channels, high voltage, and low-cost show promise for developing high-power lithium-ion batteries (LIBs). But the disproportionation and Jahn–Teller distortion lead to structural degeneration and capacity decay, especially at high working temperatures. Herein, considering the merits of single crystals and orientation of exposed crystal planes, single-crystal truncated octahedral LiMn2O4 (TO-LMO) with exposed {111}, {100} and {110} facets is rationally designed, in which the mainly exposed {111} facets are truncated by a small portion of {100} and {110} facets. The Li-deficient intermediate phase is innovatively proposed to prepare the single-crystal TO-LMO. The synergistic effects of single crystals and the orientation of exposed crystal planes significantly reduce the disproportionation of Mn3+ ions and thereby improve their structural stability. Consequently, the cycling stability of the single-crystal TO-LMO is remarkably enhanced, obtaining outstanding capacity retention of 84.3% after 2000 cycles, much better than that of 61.2% for octahedral LiMn2O4. The feasibility of preparing single-crystal truncated octahedral LiNi0.5Mn1.5O4 with exposed {111}, {100}, and {110} facets via the Li-deficient intermediate phase is further demonstrated. These findings offer new insight into regulating the orientation of exposed crystal planes and improving the reversibility of Mn-based redox couples in LIBs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202304482-sup-0001-SuppMat.pdf736.5 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Turcheniuk, D. Bondarev, V. Singhal, G. Yushin, Nature 2018, 559, 467.
- 2J. B. Goodenough, K. S. Park, J. Am. Chem. Soc. 2013, 135, 1167.
- 3J. Chen, Y. Yang, Y. Tang, Y. Wang, H. Li, X. Xiao, S. Wang, M. S. D. Darma, M. Etter, A. Missyul, A. Tayal, M. Knapp, H. Ehrenberg, S. Indris, W. Hua, Adv. Funct. Mater. 2023, 33, 2211515.
- 4C. Zhan, T. Wu, J. Lu, K. Amine, Energy Environ. Sci. 2018, 11, 243.
- 5G. Hao, Q. Lai, H. Zhang, J. Energy Chem. 2021, 59, 547.
- 6S. Dou, Ionics 2015, 21, 3001.
- 7W. Hua, S. Wang, M. Knapp, S. J. Leake, A. Senyshyn, C. Richter, M. Yavuz, J. R. Binder, C. P. Grey, H. Ehrenberg, S. Indris, B. Schwarz, Nat. Commun. 2019, 10, 5365.
- 8X. Yu, W. A. Yu, A. Manthiram, Small Methods 2021, 5, 2001196.
- 9J. H. Kim, N. P. W. Pieczonka, L. Yang, ChemPhysChem 2014, 15, 1940.
- 10S. Zhang, W. Deng, R. Momen, S. Yin, J. Chen, A. Massoudi, G. Zou, H. Hou, W. Deng, X. Ji, J. Mater. Chem. A 2021, 9, 21532.
- 11A. Bhandari, J. Bhattacharya, J. Electrochem. Soc. 2017, 164, A106.
- 12B. M. Hwang, S. J. Kim, Y. W. Lee, H. C. Park, D. M. Kim, K. W. Park, Mater. Chem. Phys. 2015, 158, 138.
- 13H. D. Liu, J. Wang, X. F. Zhang, D. Zhou, X. Qi, B. Qiu, J. H. Fang, R. Kloepsch, G. Schumacher, Z. P. Liu, J. Li, ACS Appl. Mater. Interfaces 2016, 8, 4661.
- 14S. Y. Zhou, T. Mei, X. B. Wang, Y. T. Qian, Nanoscale 2018, 10, 17435.
- 15H. L. Liu, M. Li, M. W. Xiang, J. M. Guo, H. L. Bai, W. Bai, X. F. Liu, J. Colloid Interface Sci. 2021, 585, 729.
- 16G. Xu, Z. Liu, C. Zhang, G. Cui, L. Chen, J. Mater. Chem. A 2015, 3, 4092.
- 17R. Benedek, J. Phys. Chem. C 2017, 121, 22049.
- 18A. Banerjee, Y. Shilina, B. Ziv, J. M. Ziegelbauer, S. Luski, D. Aurbach, I. C. Halalay, J. Am. Chem. Soc. 2017, 139, 1738.
- 19J. Lu, C. Zhan, T. Wu, J. Wen, Y. Lei, A. J. Kropf, H. Wu, D. J. Miller, J. W. Elam, Y. K. Sun, X. Qiu, K, A., Nat. Commun. 2014, 5, 5693.
- 20C. D. Amos, M. A. Roldan, M. Varela, J. B. Goodenough, P. J. Ferreira, Nano Lett. 2016, 16, 2899.
- 21R. J. Gummow, A. Dekock, M. M. Thackeray, Solid State Ion 1994, 69, 59.
- 22T. C. Liu, A. Dai, J. Lu, Y. F. Yuan, Y. G. Xiao, L. Yu, M. Li, J. Gim, L. Ma, J. J. Liu, C. Zhan, L. X. Li, J. X. Zheng, Y. Ren, T. P. Wu, R. Shahbazian-Yassar, J. G. Wen, F. Pan, K. Amine, Nat. Commun. 2019, 10, 4721.
- 23Y. Shin, A. Manthiram, Chem. Mater. 2003, 15, 2954.
- 24S. Bhuvaneswari, U. V. Varadaraju, R. Gopalan, R. Prakash, Electrochim. Acta. 2019, 301, 342.
- 25W. K. Kim, D. W. Han, W. H. Ryu, S. J. Lim, H. S. Kwon, Electrochim. Acta. 2012, 71, 17.
- 26J. Q. Zhao, Y. Wang, Nano Energy 2013, 2, 882.
- 27X. Y. Feng, J. X. Zhang, L. W. Yin, Energy Technol. 2016, 4, 490.
- 28A. Tron, Y. D. Park, J. Mun, J. Power Sources 2016, 325, 360.
- 29Y. Q. Cui, C. Y. Zhu, R. Huang, J. M. Liu, Y. N. Zhang, Int. J. Electrochem. Sci. 2020, 15, 5440.
- 30M. Michalska, D. A. Buchberger, J. B. Jasiński, A. K. Thapa, A. Jain, Materials 2021, 14, 4134.
- 31R. Tabassam, F. Alvi, N. Aslam, R. Raza, S. Rehman, L. Sherin, M. Ajaml, A. Ali, Mater. Lett. 2021, 302, 130275.
- 32J. S. Kim, K. Kim, W. Cho, W. H. Shin, R. Kanno, J. W. Choi, Nano Lett. 2012, 12, 6358.
- 33K. R. Chemelewski, E. S. Lee, W. Li, A. Manthiram, Chem. Mater. 2013, 25, 2890.
- 34H. D. Liu, R. Kloepsch, J. Wang, M. Winter, J. Li, J. Power Sources 2015, 300, 430.
- 35Y. Bi, J. Tao, Y. Wu, L. Li, Y. Xu, E. Hu, B. Wu, J. Hu, C. Wang, J. G. Zhang, Y. Qi, J. Xiao, Science 2020, 370, 1313.
- 36X. Fan, G. Hu, B. Zhang, X. Ou, J. Zhang, W. Zhao, H. Jia, L. Zou, P. Li, Y. Yang, Nano Energy 2020, 70, 104450.
- 37F. Li, K. Fan, Y. Tian, P. Hou, H. Zhang, Y. Sun, J. Huang, X. Xu, H. Huang, J. Mater. Chem. A 2022, 10, 16420.
- 38R. D. Vengrenovitch, Acta Metall. 1982, 30, 1079.
- 39C. C. Yec, H. C. Zeng, J. Mater. Chem. A 2014, 2, 4843.
- 40F. Zhou, X. Zhao, A. Bommel, A. W. Rowe, J. R. Dahn, Chem. Mater. 2010, 22, 1015.
- 41W. Hua, X. Yang, N. P. M. Casati, L. Liu, S. Wang, V. Baran, M. Knapp, H. Ehrenberg, S. Indris, eScience 2022, 2, 183.
- 42P. Hou, J. Yin, X. Lu, J. Li, Y. Zhao, X. Xu, Nanoscale 2018, 10, 6671.
- 43C. M. Fang, S. C. Parker, G. With, J. Am. Ceram. Soc. 2000, 83, 2082.
- 44H. Sharifdarabad, A. Zakeri, M. Adeli, Ceram. Int. 2022, 48, 6663.
- 45H. C. Chen, D. J. Jan, B. C. Lin, T. H. Hsueh, Mater. Res. Bull. 2021, 140, 111313.
- 46N. G. Vannerberg, Chem. Scr. 1976, 9, 122.
- 47W. Hua, K. Wang, M. Knapp, B. Schwarz, S. Wang, H. Liu, J. Lai, M. Müller, A. Schökel, A. Missyul, D. F. Sanchez, X. Guo, J. R. Binder, J. Xiong, S. Indris, H. Ehrenberg, Chem. Mater. 2020, 32, 4984.
- 48T. Tian, L. L. Lu, Y. C. Yin, Y. H. Tan, T. W. Zhang, F. Li, H. B. Yao, Small 2022, 18, 2106898.
- 49Y. Wu, C. Cao, J. Zhang, L. Wang, X. Ma, X. Xu, ACS Appl. Mater. Interfaces 2016, 8, 19567.
- 50W. Sun, F. Cao, Y. Liu, X. Zhao, X. Liu, J. Yuan, J. Mater. Chem. 2012, 22, 20952.
- 51Y. Cai, Y. Huang, X. Wang, D. Jia, W. Pang, Z. Guo, Y. Du, X. Tang, J. Power Sources 2015, 278, 574.
- 52M. Qian, J. Huang, S. Han, X. Cai, Electrochim. Acta 2014, 120, 16.
- 53Y.-L. Ding, J. Xie, G.-S. Cao, T.-J. Zhu, H.-M. Yu, X.-B. Zhao, Adv. Funct. Mater. 2011, 21, 348.
- 54X. Hou, X. Liu, H. Wang, X. Zhang, J. Zhou, M. Wang, Energy Storage Mater. 2023, 57, 577.
- 55H. G. Jung, J. Hassoun, J. B. Park, Y. K. Sun, B. Scrosati, Nat. Chem. 2012, 4, 579.
- 56G. Lee, M. A. Abbas, M. Lee, J. Lee, J. Lee, J. Bang, Small 2020, 16, 2002292.
- 57F. Kuang, D. Zhang, Y. Li, Y. Wan, B. Hou, J. Solid State Electrochem. 2009, 13, 385.
- 58R. Benedek, M. M. Thackeray, Phys. Rev. B 2011, 83, 195439.
- 59L. Wang, H. Li, X. Huang, E. Baudrin, Solid State Ion 2011, 193, 32.
- 60B. Y. Lee, C. T. Chu, M. Krajewski, M. Michalska, J. Y. Lin, Ceram. Int. 2020, 46, 20856.
- 61P. Hou, G. Li, X. Gao, J. Mater. Chem. A 2016, 4, 7689.
- 62F. Li, K. Fan, P. Hou, H. Huang, Small Struct. 2022, 3, 2100123.