Multi-Pleated Alkalized Ti3C2Tx MXene-Based Sandwich-Like Structure Composite Nanofibers for High-Performance Sodium/Lithium Storage
Chu Shi
Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122 China
Search for more papers by this authorZhiwen Long
Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122 China
Search for more papers by this authorCaiqin Wu
Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122 China
Search for more papers by this authorHan Dai
Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122 China
Search for more papers by this authorZhengchun Li
Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122 China
Search for more papers by this authorCorresponding Author
Hui Qiao
Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorKe Liu
Hubei Key Laboratory of Low Dimensional Optoelectronic Material and Devices, Hubei University of Arts and Science, Xiangyang, Hubei, 441053 China
Search for more papers by this authorQi Hua Fan
Department of Electrical Engineering and Computer Engineering & Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824 USA
Search for more papers by this authorCorresponding Author
Keliang Wang
Fraunhofer USA, Inc., Center for Midwest, Division for Coatings and Diamond Technologies, Michigan State University, East Lansing, MI, 48824 USA
E-mail: [email protected]; [email protected]
Search for more papers by this authorChu Shi
Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122 China
Search for more papers by this authorZhiwen Long
Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122 China
Search for more papers by this authorCaiqin Wu
Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122 China
Search for more papers by this authorHan Dai
Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122 China
Search for more papers by this authorZhengchun Li
Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122 China
Search for more papers by this authorCorresponding Author
Hui Qiao
Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorKe Liu
Hubei Key Laboratory of Low Dimensional Optoelectronic Material and Devices, Hubei University of Arts and Science, Xiangyang, Hubei, 441053 China
Search for more papers by this authorQi Hua Fan
Department of Electrical Engineering and Computer Engineering & Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824 USA
Search for more papers by this authorCorresponding Author
Keliang Wang
Fraunhofer USA, Inc., Center for Midwest, Division for Coatings and Diamond Technologies, Michigan State University, East Lansing, MI, 48824 USA
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The volume expansion of CoFe2O4 anode poses a significant challenge in the commercial application of lithium/sodium-ion batteries (LIBs/SIBs). However, metal–organic-frameworks (MOF) offer superior construction of heterostructures with refined interfacial interactions and lower ion diffusion barriers in Li/Na storage. In this study, the CoFe2O4@carbon nanofibers derived from MOF are produced through electrospinning, in situ growth followed by calcination, which are then confined within an MXene-confined MOF-derived porous CoFe2O4@carbon composite architecture under alkali treatment. The CoFe2O4 nanofibers anchor on the alkalized MXene that is decorated with the NaOH solution to form a multi-pleated structure. The sandwich-like structure of the composite effectively alleviates the volume expansion and shortens the Li/Na-ion diffusion path, which displays high capacity and outstanding rate performance as anode materials for LIBs/SIBs. As a consequence, the obtained CoFe2O4@carbon@alkalized MXene composite anode shows satisfied rate performance at current density of 10 A g−1 for LIBs (318 mAh·g−1) and 5 A g−1 for SIBs (149 mAh g−1). The excellent cycling performance is further demonstrated at a high current density, where it maintains a discharge capacity of 807 mAh g−1 at 2 A g−1 after 400 cycles for LIBs and 130 mAh g−1 at 1 A g−1 even after 1000 cycles for SIBs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202303802-sup-0001-SuppMat.pdf1.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Gur, Energy Environ. Sci. 2018, 11, 2696.
- 2S. S. Yao, Y. P. He, Y. Q. Wang, M. Z. Bi, Y. Z. Liang, A. Majeed, Z. L. Yang, X. Q. Shen, J. Colloid Interface Sci. 2021, 601, 209.
- 3J. Y. Hwang, S. T. Myung, Y. K. Sun, Adv. Funct. Mater. 2018, 28, 43.
- 4S. Y. Dong, N. Lv, Y. L. Wu, Y. Z. Zhang, G. Y. Zhu, X. C. Dong, Nano Today 2021, 42, 101349.
10.1016/j.nantod.2021.101349 Google Scholar
- 5A. Tomaszewska, Z. Y. Chu, X. N. Feng, S. O'Kane, X. H. Liu, J. Y. Chen, C. Z. Ji, E. Endler, R. H. Li, L. S. Liu, Y. L. Li, S. Q. Zheng, S. Vetterlein, M. Gao, J. Y. Du, M. Parkes, M. G. Ouyang, M. Marinescu, G. Offer, B. Wu, eTransportation 2019, 1, 100011.
- 6P. C. Ruan, S. Q. Liang, B. G. Lu, H. J. Fan, J. Zhou, Angew. Chem., Int. Ed. 2022, 61, 17.
10.1002/anie.202200598 Google Scholar
- 7Y. Q. Wang, N. An, L. Wen, L. Wang, X. T. Jiang, F. Hou, Y. X. Yin, J. Liang, J. Energy Chem. 2021, 55, 391.
- 8C. M. Chen, P. C. Li, T. H. Wang, S. Y. Wang, M. Zhang, Small 2019, 15, 38.
- 9S. Fang, D. Bresser, S. Passerini, Adv. Energy Mater. 2020, 10, 1902485.
- 10C. J. Zhang, Y. P. He, Y. Q. Wang, Y. Z. Liang, A. Majeed, Z. L. Yang, S. S. Yao, X. Q. Shen, T. B. Li, S. B. Qin, Appl. Surf. Sci. 2021, 560, 1449908.
- 11Z. Z. Wu, D. Adekoya, X. Huang, M. J., ACS Nano 2020, 14, 12016.
- 12L. Qin, Z. H. Xu, Y. L. Zheng, C. Li, J. W. Mao, G. L. Zhang, Adv. Funct. Mater. 2020, 30, 1910257.
- 13P. Sehrawat, A. Shabir, Abid, C. M. J., S. S. Islam, J. Power Sources 2021, 501, 229709.
- 14P. Y. Wang, B. C. Zhao, J. Bai, P. Tong, X. B. Zhu, Y. P. Sun, Adv. Mater. Interfaces 2022, 9, 2200606.
- 15R. M. Gao, Z. J. Zheng, P. F. Wang, C. Y. Wang, H. Ye, F. F. Cao, Energy Storage Mater. 2020, 30, 9.
- 16R. Sahoo, M. Singh, T. N. Rao, ChemElectroChem. 2021, 8, 2358.
- 17P. Ma, D. L. Fang, Y. L. Liu, Y. Shang, Y. M. Shi, H. Y. Yang, Adv. Sci. 2021, 8, 2003185.
- 18D. Cao, M. X. Ren, J. Xiong, L. M. Pan, Y. Wang, X. Z. Ji, T. Qiu, J. Yang, C. F. Zhang, Electrochim. Acta 2020, 348, 136211.
- 19H. H. Dai, X. Zhao, H. Xu, J. Yang, J. Y. Zhou, Q. Chen, G. Z. Sun, ACS Nano 2022, 16, 5556.
- 20X. X. Lv, Z. X. Deng, M. L. Wang, J. J. Deng, J. Alloy. Compd. 2022, 918, 165697.
- 21X. L. Zhang, J. F. Li, J. B. Li, L. Han, T. Lu, X. J. Zhang, G. Zhu, L. K. Pan, Chem. Eng. J. 2020, 385, 123394.
- 22G. Y. Du, M. L. Tao, W. Gao, Y. Q. Zhang, R. M. Zhan, S. J. Bao, M. W. Xu, Inorg. Chem. Front. 2019, 6, 117.
- 23J. F. Ding, C. Tang, G. J. Zhu, F. Y. He, A. J. Du, M. H. Wu, H. J. Zhang, Mater. Chem. Front. 2021, 5, 825.
- 24S. S. Yao, C. J. Zhang, F. W. Xie, S. K. Xue, K. D. Gao, R. D. Gou, X. Q. Shen, T. B. Li, S. B. Qin, ACS Sustainable Chem. Eng. 2020, 8, 2707.
- 25Y. L. Zhang, K. P. Ruan, X. T. Shi, H. Qiu, Y. Pan, Y. Yan, J. W. Gu, Carbon 2021, 175, 271.
- 26H. X. Zhang, Z. R. Jia, B. B. Wang, X. M. Wu, T. Sun, X. H. Liu, L. Bi, G. L. Wu, Chem. Eng. J. 2021, 421, 129960.
- 27R. R. Li, H. Z. Ke, C. Shi, Z. W. Long, Z. X. Dai, H. Qiao, K. L. Wang, Chem. Eng. J. 2021, 415, 128874.
- 28M. Kundu, G. Karunakaran, E. Kolesnikov, V. E. Sergeevna, S. Kumari, M. V. Gorshenkov, D. Kuznetsov, J. Ind. Eng. Chem. 2018, 59, 90.
- 29S. S. Yao, M. Z. Bi, H. L. Yu, C. J. Zhang, X. N. Zhang, H. T. Liu, T. J. Zhang, J. Xiang, X. Q. Shen, Appl. Surf. Sci. 2022, 598, 153787.
- 30Y. M. Cai, L. Zhang, R. L. Fang, Y. Wang, J. X. Wang, Sep. Purif. Technol. 2022, 292, 121019.
- 31M. Sabharwal, M. Secanell, Electrochim. Acta 2022, 419, 140410.
- 32W. Y. Xie, Y. Z. Wang, J. Zhou, M. Zhang, J. L. Yu, C. Z. Zhu, J. Xu, Appl. Surf. Sci. 2020, 534, 147584.
- 33L. Wang, X. Bie, Y. W. Dong, B. Wang, Z. X. Chen, L. Huang, M. Xiong, Q. C. Zhang, R. H. Huang, ACS Appl Energy Mater. 2022, 5, 4577.
- 34M. Heydari, M. Gharagozlou, M. Ghahari, S. Sadjadi, Inorg. Chem. Commun. 2021, 130, 108693.
- 35C. Q. Hao, G. F. Li, G. L. Wang, W. Chen, S. S. Wang, Colloid Surf. A; Physicochem. Eng. Asp. 2021, 632, 127730.
10.1016/j.colsurfa.2021.127730 Google Scholar
- 36Y. Zheng, W. Y. Chen, Y. Sun, C. X. Huang, Z. Q. Wang, D. Z. Zhou, J. Colloid Interface Sci. 2021, 595, 151.
- 37Z. F. Zhao, S. Wang, F. Wan, Z. W. Tie, Z. Q. Niu, Adv. Funct. Mater. 2021, 31, 23.
- 38Y. P. Liu, D. Wang, C. Zhang, Y. Zhao, P. M. Ma, W. F. Dong, Y. P. Huang, T. X. Liu, Adv. Fiber Mater. 2022, 4, 820.
- 39F. F. Xue, Y. Y. Li, C. Liu, Z. G. Zhang, J. Lin, J. Y. Hao, Q. H. Li, Inorg. Chem. Front. 2021, 8, 3363.
- 40L. B. Kang, H. P. Ren, Z. Xing, Y. L. Zhao, Z. C. Ju, New J. Chem. 2020, 44, 12546.
- 41C. P. Wang, H. Su, Y. H. Ma, D. C. Yang, Y. T. Dong, D. Li, L. Z. Wang, Y. S. Liu, J. M. Zhang, ACS Appl. Mater. Interfaces 2018, 10, 28679.
- 42H. Yu, H. S. Fan, X. L. Wu, H. W. Wang, Z. Z. Luo, H. T. Tan, B. L. Yadian, Y. Z. Huang, Q. Y. Yan, Energy Storage 2016, 4, 145.
10.1016/j.ensm.2016.05.005 Google Scholar
- 43X. B. Hui, R. Z. Zhao, P. Zhang, C. X. Li, C. X. Wang, L. W. Yin, Adv. Energy Mater. 2019, 9, 1901065.
- 44Q. Li, H. S. Li, Q. T. Xia, Z. Q. Hu, Y. Zhu, S. S. Yan, C. Ge, Q. H. Zhang, X. X. Wang, X. T. Shang, S. T. Fan, Y. Z. Long, L. Gu, G. X. Miao, G. H. Yu, J. S. Moodera, Nat. Mater. 2020, 20, 76.
- 45Y. Peng, J. Xu, J. M. Xu, J. Ma, Y. Bai, S. Cao, S. T. Zhang, H. Pang, Adv. Colloid Interface Sci. 2022, 307, 102732.
- 46Z. J. Li, D. F. Guo, D. Z. Wang, M. Sun, H. B. Sun, J. Power Sources 2021, 506, 230197.
- 47M. Q. Zhao, X. Q. Xie, C. E. Ren, T. Makaryan, B. Anasori, G. X. Wang, Y. Gogtsi, Adv. Mater. 2017, 29, 1702410.
- 48F. Wu, Y. Jiang, Z. Q. Ye, Y. X. Huang, Z. H. Wang, S. J. Li, Y. Mei, M. Xie, L. Li, R. J. Chen, J. Mater. Chem. A 2019, 7, 1315.
- 49H. Chen, N. Chen, M. N. Zhang, M. L. Li, Y. Gao, C. Z. Wang, G. Chen, F. Du, Nanotechnology 2019, 30, 134001.
- 50P. Zhang, R. A. Soomro, Z. R. X. Guan, N. Sun, B. Xu, Energy Storage Mater. 2020, 29, 163.
- 51R. J. Meng, J. M. Huang, Y. T. Feng, L. H. Zu, C. X. Peng, L. R. Zheng, L. Zheng, Z. B. Chen, G. L. Liu, B. J. Chen, Adv. Energy Mater. 2018, 8, 1801514.
- 52P. F. Huang, S. L. Zhang, H. J. Ying, Z. Zhang, W. Q. Han, Chem. Eng. J. 2021, 417, 129161.
- 53X. Li, X. H. Sun, X. D. Hu, F. R. Fan, S. Cai, C. M. Zheng, G. D. Stucky, Nano Energy 2020, 77, 105143.
- 54V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci. 2014, 7, 1597.
- 55K. Ma, H. Jiang, Y. J. Hu, C. Z. Li, Adv. Funct. Mater. 2018, 28, 1804306.
- 56J. M. Liang, Z. Zhou, Q. C. Zhang, X. W. Hu, W. C. Peng, Y. Li, F. B. Zhang, X. B. Fan, J. Power Sources 2021, 495, 229758.
- 57B. Y. Sun, S. F. Lou, Z. Y. Qian, P. J. Zuo, C. Y. Du, Y. L. Ma, H. Hou, J. Y. Xie, J. J. Wang, G. P. Yin, Nano Energy 2020, 66, 104179.
10.1016/j.nanoen.2019.104179 Google Scholar
- 58H. Duan, M. Fan, W. P. Chen, J. Y. Li, P. F. Wang, W. P. Wang, J. L. Shi, Y. X. Yin, L. J. Wan, Y. G. Guo, Adv. Mater. 2019, 31, 1807789.