Electron Injection via Interfacial Atomic Au Clusters Substantially Enhance the Visible-Light-Driven Photocatalytic H2 Production of the PF3T Enclosed TiO2 Nanocomposite
Jui-Cheng Kao
Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010 Taiwan
Search for more papers by this authorDinesh Bhalothia
Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorZan-Xiang Wang
Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorHao-Wu Lin
Department of Material Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorFan-Gang Tseng
Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorLi-Yu Ting
Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorHo-Hsiu Chou
Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorYu-Chieh Lo
Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010 Taiwan
Search for more papers by this authorCorresponding Author
Jyh-Pin Chou
Department of Physics, National Changhua University of Education, Changhua, 50007 Taiwan
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Tsan-Yao Chen
Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan
Hierarchical Green-Energy Materials (Hi-GEM) Research Centre, National Cheng Kung University, Tainan, 70101 Taiwan
E-mail: [email protected]; [email protected]
Search for more papers by this authorJui-Cheng Kao
Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010 Taiwan
Search for more papers by this authorDinesh Bhalothia
Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorZan-Xiang Wang
Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorHao-Wu Lin
Department of Material Science and Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorFan-Gang Tseng
Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorLi-Yu Ting
Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorHo-Hsiu Chou
Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
Search for more papers by this authorYu-Chieh Lo
Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010 Taiwan
Search for more papers by this authorCorresponding Author
Jyh-Pin Chou
Department of Physics, National Changhua University of Education, Changhua, 50007 Taiwan
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Tsan-Yao Chen
Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013 Taiwan
Hierarchical Green-Energy Materials (Hi-GEM) Research Centre, National Cheng Kung University, Tainan, 70101 Taiwan
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
A hybrid composite of organic–inorganic semiconductor nanomaterials with atomic Au clusters at the interface decoration (denoted as PF3T@Au-TiO2) is developed for visible–light-driven H2 production via direct water splitting. With a strong electron coupling between the terthiophene groups, Au atoms and the oxygen atoms at the heterogeneous interface, significant electron injection from the PF3T to TiO2 occurs leading to a quantum leap in the H2 production yield (18 578 µmol g−1 h−1) by ≈39% as compared to that of the composite without Au decoration (PF3T@TiO2, 11 321 µmol g−1 h−1). Compared to the pure PF3T, such a result is 43-fold improved and is the best performance among all the existing hybrid materials in similar configurations. With robust process control via industrially applicable methods, it is anticipated that the findings and proposed methodologies can accelerate the development of high-performance eco-friendly photocatalytic hydrogen production technologies.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202303391-sup-0001-SuppMat.pdf771.9 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Liu, Y. Yu, X. Zhu, J. Fang, W. Xu, X. Hu, R. Li, L. Yao, J. Qin, Z. Fang, Mater. Res. Bull. 2022, 147, 111636.
- 2H. Li, S. Dai, D. Bhalothia, A. Hu, J.-P. Chou, T.-Y. Chen, J. Mater. Chem. A 2021, 9, 12019.
- 3H. Song, S. Luo, H. Huang, B. Deng, J. Ye, ACS Energy Lett. 2022, 7, 1043.
- 4Y. Liu, J. Tian, L. Wei, Q. Wang, C. Wang, Z. Xing, X. Li, W. Yang, C. Yang, Sep. Purif. Technol. 2021, 257, 117976.
- 5H. H. Do, D. L. T. Nguyen, X. C. Nguyen, T.-H. Le, T. P. Nguyen, Q. T. Trinh, S. H. Ahn, D.-V. N. Vo, S. Y. Kim, Q. V. Le, Arabian J. Chem. 2020, 13, 3653.
- 6W. Fan, X. Yu, H.-C. Lu, H. Bai, C. Zhang, W. Shi, Appl. Catal., B 2016, 181, 7.
- 7H. Y. Hafeez, S. K. Lakhera, S. Bellamkonda, G. R. Rao, M. V. Shankar, D. W. Bahnemann, B. Neppolian, Int. J. Hydrogen Energy 2018, 43, 3892.
- 8J. Cai, J. Shen, X. Zhang, Y. H. Ng, J. Huang, W. Guo, C. Lin, Y. Lai, Small Methods 2019, 3, 1800184.
- 9S.-H. Liu, W.-T. Tang, W.-X. Lin, Int. J. Hydrogen Energy 2017, 42, 24006.
- 10W. Zhao, Y. Li, M. Zhang, J. Chen, L. Xie, Q. Shi, X. Zhu, Chem. Eng. J. 2016, 283, 105.
- 11D. Gao, X. Wu, P. Wang, Y. Xu, H. Yu, J. Yu, ACS Sustainable Chem. Eng. 2019, 7, 10084.
- 12A. L. Luna, E. Novoseltceva, E. Louarn, P. Beaunier, E. Kowalska, B. Ohtani, M. A. Valenzuela, H. Remita, C. Colbeau-Justin, Appl. Catal., B 2016, 191, 18.
- 13L. Cheng, D. Zhang, Y. Liao, F. Li, H. Zhang, Q. Xiang, J. Colloid Interface Sci. 2019, 555, 94.
- 14H. Zhao, M. Wu, J. Liu, Z. Deng, Y. Li, B.-L. Su, Appl. Catal., B 2016, 184, 182.
- 15J. Chen, X. Tao, L. Tao, H. Li, C. Li, X. Wang, C. Li, R. Li, Q. Yang, Appl. Catal., B 2019, 241, 461.
- 16X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76.
- 17T. Tong, B. Zhu, C. Jiang, B. Cheng, J. Yu, Appl. Surf. Sci. 2018, 433, 1175.
- 18I. Majeed, U. Manzoor, F. K. Kanodarwala, M. A. Nadeem, E. Hussain, H. Ali, A. Badshah, J. A. Stride, M. A. Nadeem, Catal. Sci. Technol. 2018, 8, 1183.
- 19K. Schwinghammer, B. Tuffy, M. B. Mesch, E. Wirnhier, C. Martineau, F. Taulelle, W. Schnick, J. Senker, B. V. Lotsch, Angew. Chem., Int. Ed. 2013, 52, 2435.
- 20R. S. Sprick, B. Bonillo, M. Sachs, R. Clowes, J. R. Durrant, D. J. Adams, A. I. Cooper, Chem. Commun. 2016, 52, 10008.
- 21L. Li, Z. Cai, Q. Wu, W.-Y. Lo, N. Zhang, L. X. Chen, L. Yu, J. Am. Chem. Soc. 2016, 138, 7681.
- 22B. Chen, X. Wang, W. Dong, X. Zhang, L. Rao, H. Chen, D. Huang, Y. Xiang, Chemistry 2019, 25, 3362.
- 23D. Bhalothia, Z.-X. Wang, L.-Y. Ting, Y.-T. Chuang, J.-P. Chou, H.-W. Lin, F.-G. Tseng, H.-H. Chou, T.-Y. Chen, J. Phys. Chem. C 2022, 126, 18596.
- 24A. Charas, J. Morgado, J. M. G. Martinho, A. Fedorov, L. Alcácer, F. Cacialli, J. Mater. Chem. 2002, 12, 3523.
- 25M. Kuik, L. J. A. Koster, G. A. H. Wetzelaer, P. W. M. Blom, Phys. Rev. Lett. 2011, 107, 256805.
- 26R. N. Hall, Phys. Rev. 1952, 87, 387.
- 27W. Shockley, W. T. Read, Phys. Rev. 1952, 87, 835.
- 28D. Gao, J. Xu, L. Wang, B. Zhu, H. Yu, J. Yu, Adv. Mater. 2022, 34, 2108475.
- 29B. Hammer, J. K. Nørskov, Adv. Catal. 2000, 45, 71.
- 30J. R. Kitchin, J. K. Nørskov, M. A. Barteau, J. G. Chen, J. Chem. Phys. 2004, 120, 10240.
- 31M. Mavrikakis, B. Hammer, J. K. Nørskov, Phys. Rev. Lett. 1998, 81, 2819.
- 32B. Hammer, J. K. Nørskov, Surf. Sci. 1995, 343, 211.
- 33A. Ruban, B. Hammer, P. Stoltze, H. L. Skriver, J. K. Nørskov, J. Mol. Catal. A: Chem. 1997, 115, 421.
- 34P. C. D. Mendes, V. K. Ocampo-Restrepo, J. L. F. Da Silva, Phys. Chem. Chem. Phys. 2020, 22, 8998.
- 35L.-Y. Ting, J. Jayakumar, C.-L. Chang, W.-C. Lin, M. H. Elsayed, H.-H. Chou, J. Mater. Chem. A 2019, 7, 22924.
- 36G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 37Comput. Mater. Sci. 1996, 6, 15.
- 38P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
- 39J. P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 1996, 54, 16533.
- 40J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 41H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
- 42J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson Jr., J. V. Smith, J. Am. Chem. Soc. 1987, 109, 3639.
- 43L. Li, Y. Zhang, A. M. Schultz, X. Liu, P. A. Salvador, G. S. Rohrer, Catal. Sci. Technol. 2012, 2, 1945.
- 44G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 2006, 36, 354.
- 45R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford 1994.