Metal-Organic Frameworks as a New Platform to Construct Ordered Mesoporous Ce-Based Oxides for Efficient CO2 Fixation under Ambient Conditions
Yimin Chen
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorLiyu Chen
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorYingwei Li
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorCorresponding Author
Kui Shen
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
E-mail: [email protected]
Search for more papers by this authorYimin Chen
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorLiyu Chen
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorYingwei Li
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
Search for more papers by this authorCorresponding Author
Kui Shen
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Metal-organic frameworks (MOFs) are proved to be good precursors to derive various nanomaterials with desirable functions, but so far the controllable synthesis of ordered mesoporous derivatives from MOFs has not been achieved. Herein, this work reports, for the first time, the construction of MOF-derived ordered mesoporous (OM) derivatives by developing a facile mesopore-inherited pyrolysis-oxidation strategy. This work demonstrates a particularly elegant example of this strategy, which involves the mesopore-inherited pyrolysis of OM-CeMOF into a OM-CeO2@C composite, followed by the oxidation removal of its residual carbon, affording the corresponding OM-CeO2. Furthermore, the good tunability of MOFs helps to allodially introduce zirconium into OM-CeO2 to regulate its acid-base property, thus boosting its catalytic activity for CO2 fixation. Impressively, the optimized Zr-doped OM-CeO2 can achieve above 16 times higher catalytic activity than its solid CeO2 counterpart, representing the first metal oxide-based catalyst to realize the complete cycloaddition of epichlorohydrin with CO2 under ambient temperature and pressure. This study not only develops a new MOF-based platform for enriching the family of ordered mesoporous nanomaterials, but also demonstrates an ambient catalytic system for CO2 fixation.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202303235-sup-0001-SuppMat.pdf6.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Sun, H. Li, L. Chen, Energy Environ. Sci. 2012, 5, 8475.
- 2K. Wu, L. D. Sun, C. H. Yan, Adv. Energy Mater. 2016, 6, 1600501.
- 3X. Huang, K. Zhang, B. Peng, G. Wang, M. Muhler, F. Wang, ACS Catal. 2021, 11, 9618.
- 4Y. Ren, Z. Ma, P. G. Bruce, Chem. Soc. Rev. 2012, 41, 4909.
- 5J. Liang, Z. Liang, R. Zou, Y. Zhao, Adv. Mater. 2017, 29, 1701139.
- 6D. M. Lyons, L. P. Harman, M. A. Morris, J. Mater. Chem. 2004, 14, 1976.
- 7L. Mengli, Z. Lingxia, W. Meiying, D. Yanyan, F. Xiangqian, W. Min, Z. Linlin, K. Qinglu, S. Jianlin, Nano Energy 2015, 19, 145.
- 8X. Yan, T. Hu, P. Liu, S. Li, B. Zhao, Q. Zhang, W. Jiao, S. Chen, P. Wang, J. Lu, L. Fan, X. Deng, Y. X. Pan, Appl. Catal. B 2019, 246, 221.
- 9Y. Deng, J. Wei, Z. Sun, D. Zhao, Chem. Soc. Rev. 2012, 42, 4054.
- 10a) H. Li, Z. Qin, X. Yang, X. Chen, Y. Li, K. Shen, ACS Cent. Sci. 2022, 8, 718; b) K. Shen, L. Zhang, X. Chen, L. Liu, D. Zhang, Y. Han, J. Chen, J. Long, R. Luque, Y. Li, B. Chen, Science 2018, 359, 206.
- 11a) H. Wang, X. Li, X. Lan, T. Wang, ACS Catal. 2018, 8, 2121; b) Y. Xin, F. Wang, L. Chen, Y. Li, K. Shen, Green Chem. 2022, 24, 6544; c) T. Guo, L. Chen, Y. Li, K. Shen, Small 2022, 18, 2107739; d) Z. Wang, K. Shen, L. Chen, Y. Li, Sci. China Chem. 2021, 65, 619; e) L. Yan, L. Cao, P. Dai, X. Gu, D. Liu, L. Li, Y. Wang, X. Zhao, Adv. Funct. Mater. 2017, 27, 1703455.
- 12R. C. K. Reddy, J. Lin, Y. Chen, C. Zeng, X. Lin, Y. Cai, C. Y. Su, Coord. Chem. Rev. 2020, 420, 213434.
- 13Y. Li, Y. Xu, W. Yang, W. Shen, H. Xue, H. Pang, Small 2018, 14, 1704435.
- 14G. Wang, S. Yang, L. Cao, P. Jin, X. Zeng, X. Zhang, J. Wei, Coord. Chem. Rev. 2021, 445, 214086.
- 15a) H. L. Zhu, J. R. Huang, P. Q. Liao, X. M. Chen, ACS Cent. Sci. 2022, 8, 1506; b) F. Chen, K. Shen, Y. Yang, H. Huang, Y. Li, ACS Appl. Mater. Interfaces 2020, 12, 48691; c) X. Yan, C. Yuan, J. Bao, S. Li, D. Qi, Q. Wang, B. Zhao, T. Hu, L. Fan, B. Fan, R. Li, F. Tao, Y. X. Pan, Catal. Sci. Technol. 2018, 8, 3474; d) Q. J. Wu, J. Liang, Y. B. Huang, R. Cao, Acc. Chem. Res. 2022, 55, 2978; e) Y. Wu, L. Chen, X. Yang, Y. Li, K. Shen, Sci China Chem 2022, 65, 2450.
- 16a) R. R. Salunkhe, Y. V. Kaneti, Y. Yamauchi, ACS Nano 2017, 11, 5293; b) X. Wang, H. Huang, J. Qian, Y. Li, K. Shen, Appl Catal B 2023, 325, 122295; c) Y. Wu, L. Wang, L. Chen, Y. Li, K. Shen, Small 2023, 19, 2207689.
- 17C. D. Malonzo, S. M. Shaker, L. Ren, S. D. Prinslow, A. E. Platero-Prats, L. C. Gallington, J. Borycz, A. B. Thompson, T. C. Wang, O. K. Farha, J. T. Hupp, C. C. Lu, K. W. Chapman, J. C. Myers, R. L. Penn, L. Gagliardi, M. Tsapatsis, A. Stein, J. Am. Chem. Soc. 2016, 138, 2739.
- 18K. Li, J. Yang, R. Huang, S. Lin, J. Gu, Angew. Chem., Int. Ed. 2020, 59, 14124.
- 19X. Zhang, D. Wang, M. Jing, J. Liu, Z. Zhao, G. Xu, W. Song, Y. Wei, Y. Sun, ChemCatChem 2019, 11, 2089.
- 20A. E. Nelson, K. H. Schulz, Appl. Surf. Sci. 2003, 210, 206.
- 21C. Ke, M. Li, G. Fan, L. Yang, F. Li, Chem. Asian J. 2018, 13, 2714.
- 22E. Beche, G. Peraudeau, V. Flaud, D. Perarnau, Surf. Interface Anal. 2012, 44, 1045.
- 23S. Ding, H. Wang, J. Han, X. Zhu, Q. Ge, Ind. Eng. Chem. Res. 2018, 57, 17086.
- 24S. Abdollahzadeh-Ghom, C. Zamani, T. Andreu, M. Epifani, J. R. Morante, Appl. Catal. B 2011, 108–109, 32.
- 25F. Wang, S. He, H. Chen, B. Wang, L. Zheng, M. Wei, D. G. Evans, X. Duan, J. Am. Chem. Soc. 2016, 138, 6298.
- 26L. P. C. Silva, L. E. Terra, A. C. S. L. S. Coutinho, F. B. Passos, J. Catal. 2016, 341, 1.
- 27P. Fornasiero, R. Dimonte, G. R. Rao, J. Kaspar, S. Meriani, A. Trovarelli, M. Graziani, J. Catal. 1995, 151, 168.
- 28Z. Qin, H. Li, X. Yang, L. Chen, Y. Li, K. Shen, Appl Catal B 2022, 307, 121163.
- 29X. Cui, X. Dai, A. E. Surkus, K. Junge, C. Kreyenschulte, G. Agostini, N. Rockstroh, M. Beller, Chin. J. Catal. 2019, 40, 1679.
- 30E. J. Doskocil, Microporous Mesoporous Mater. 2004, 76, 177.
- 31M. K. Leu, I. Vicente, J. A. Fernandes, I. de Pedro, J. Dupont, V. Sans, P. Licence, A. Gual, I. Cano, Appl. Catal. B 2019, 245, 240.
- 32Z. Yanming, P. Yunlei, S. Chuan, L. Zhou, W. Lukasz, Z. Zhenjie, Z. Bao, F. Yaqing, M. Shengqian, Nano Res. 2021, 15, 1145.
- 33B. Aguila, Q. Sun, X. Wang, E. O'Rourke, A. M. Al-Enizi, A. Nafady, S. Ma, Angew. Chem., Int. Ed. 2018, 57, 10107.
- 34N. Kulal, V. Vasista, G. V. Shanbhag, J. CO2 Util. 2019, 33, 434.
- 35A. I. Adeleye, S. Kellici, T. Heil, D. Morgan, M. Vickers, B. Saha, Catal. Today 2015, 256, 347.
- 36R. R. Kuruppathparambil, R. Babu, H. M. Jeong, G. Y. Hwang, G. S. Jeong, M. I. Kim, D. W. Kim, D. W. Park, Green Chem. 2016, 18, 6349.
- 37K. B. Rasal, G. D. Yadav, R. Koskinen, R. Keiski, Mol. Catal. 2018, 451, 200.
- 38a) H. Beyzavi, R. C. Klet, S. Tussupbayev, J. Borycz, N. A. Vermeulen, C. J. Cramer, J. F. Stoddart, J. T. Hupp, O. K. Farha, J. Am. Chem. Soc. 2014, 136, 15861; b) J. Liang, R. P. Chen, X. Y. Wang, T. T. Liu, X. S. Wang, Y. B. Huang, R. Cao, Chem. Sci. 2017, 8, 1570.