Carrier Transport Regulation of Pixel Graphene Transparent Electrodes for Active-Matrix Organic Light-Emitting Diode Display
Dingdong Zhang
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
Search for more papers by this authorJinhong Du
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
Search for more papers by this authorWeimin Zhang
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
Search for more papers by this authorBo Tong
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
Search for more papers by this authorYun Sun
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
Search for more papers by this authorTian-Yang Zhao
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
Search for more papers by this authorLai-Peng Ma
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
Search for more papers by this authorDong-Ming Sun
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
Search for more papers by this authorHui-Ming Cheng
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
Faculty of Materials Science and Energy Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055 P. R. China
Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 P. R. China
Search for more papers by this authorCorresponding Author
Wencai Ren
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
E-mail: [email protected]
Search for more papers by this authorDingdong Zhang
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
Search for more papers by this authorJinhong Du
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
Search for more papers by this authorWeimin Zhang
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
Search for more papers by this authorBo Tong
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
Search for more papers by this authorYun Sun
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
Search for more papers by this authorTian-Yang Zhao
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
Search for more papers by this authorLai-Peng Ma
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
Search for more papers by this authorDong-Ming Sun
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
Search for more papers by this authorHui-Ming Cheng
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
Faculty of Materials Science and Energy Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055 P. R. China
Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 P. R. China
Search for more papers by this authorCorresponding Author
Wencai Ren
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 P. R. China
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
Integrating a graphene transparent electrode (TE) matrix with driving circuits is essential for the practical use of graphene in optoelectronics such as active-matrix organic light-emitting diode (OLED) display, however it is disabled by the transport of carriers between graphene pixels after deposition of a semiconductor functional layer caused by the atomic thickness of graphene. Here, the carrier transport regulation of a graphene TE matrix by using an insulating polyethyleneimine (PEIE) layer is reported. The PEIE forms an ultrathin uniform film (≤10 nm) to fill the gap of the graphene matrix, blocking horizontal electron transport between graphene pixels. Meanwhile, it can reduce the work function of graphene, improving the vertical electron injection through electron tunneling. This enables the fabrication of inverted OLED pixels with record high current and power efficiencies of 90.7 cd A−1 and 89.1 lm W−1, respectively. By integrating these inverted OLED pixels with a carbon nanotube-based thin-film transistor (CNT-TFT)-driven circuit, an inch-size flexible active-matrix OLED display is demonstrated, in which all OLED pixels are independently controlled by CNT-TFTs. This research paves a way for the application of graphene-like atomically thin TE pixels in flexible optoelectronics such as displays, smart wearables, and free-form surface lighting.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202302920-sup-0001-SuppMat.pdf1.7 MB | Supporting Information |
smll202302920-sup-0002-MovieS1.mp42.6 MB | Supplemental Movie 1 |
smll202302920-sup-0003-MovieS2.mp4335.2 KB | Supplemental Movie 2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, Nature 2012, 490, 192; b) F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, Nat. Photonics 2010, 4, 611; c) S. P. Pang, Y. Hernandez, X. L. Feng, K. Mullen, Adv. Mater. 2011, 23, 2779.
- 2a) T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, T. W. Lee, Nat. Photonics 2012, 6, 105; b) S.-J. Kwon, T.-H. Han, T. Y. Ko, N. Li, Y. Kim, D. J. Kim, S.-H. Bae, Y. Yang, B. H. Hong, K. S. Kim, S. Ryu, T.-W. Lee, Nat. Commun. 2018, 9, 2037; c) N. Li, S. Oida, G. S. Tulevski, S.-J. Han, J. B. Hannon, D. K. Sadana, T.-C. Chen, Nat. Commun. 2013, 4, 2294; d) J. Lee, T. H. Han, M. H. Park, D. Y. Jung, J. Seo, H. K. Seo, H. Cho, E. Kim, J. Chung, S. Y. Choi, T. S. Kim, T. W. Lee, S. Yoo, Nat. Commun. 2016, 7, 11791.
- 3a) L.-P. Ma, Z. B. Wu, L. C. Yin, D. D. Zhang, S. C. Dong, Q. Zhang, M.-L. Chen, W. Ma, Z. B. Zhang, J. H. Du, D.-M. Sun, K. H. Liu, X. F. Duan, D. G. Ma, H.-M. Cheng, W. C. Ren, Proc. Natl. Acad. Sci. USA 2020, 117, 25991. b) S. Jiang, P.-X. Hou, M.-L. Chen, B.-W. Wang, D.-M. Sun, D.-M. Tang, Q. Jin, Q.-X. Guo, D. D. Zhang, J. H. Du, K.-P. Tai, J. Tan, E. I. Kauppinen, C. Liu, H.-M. Cheng, Sci. Adv. 2018, 4, 9264; c) S. Ahn, T. H. Han, K. Maleski, J. Song, Y. H. Kim, M. H. Park, H. Zhou, S. Yoo, Y. Gogotsi, T. W. Lee, Adv. Mater. 2020, 32, 2000919; d) W. Jiang, S. Lee, K. Zhao, K. Lee, H. Han, J. Oh, H. Lee, H. Kim, C. M. Koo, C. Park, ACS Nano 2022, 16, 9203.
- 4Z. K. Zhang, J. H. Du, D. D. Zhang, H. D. Sun, L. C. Yin, L. P. Ma, J. S. Chen, D. G. Ma, H. M. Cheng, W. C. Ren, Nat. Commun. 2017, 8, 14560.
- 5J. H. Du, B. Tong, S. D. Yuan, N. A. Dai, R. Liu, D. D. Zhang, H. M. Cheng, W. C. Ren, Adv. Funct. Mater. 2022, 32, 2203115.
- 6a) W.-J. Joo, M. L. Brongersma, Science 2022, 377, 1376; b) M. Choi, Y. J. Park, B. K. Sharma, S. R. Bae, S. Y. Kim, J. H. Ahn, Sci. Adv. 2018, 4, eaas8721.
- 7a) C. Yun, H. Cho, H. Kang, Y. M. Lee, Y. Park, S. Yoo, Appl. Phys. Lett. 2009, 95, 053301; b) Y. H. Kim, T. H. Han, H. Cho, S. Y. Min, C. L. Lee, T. W. Lee, Adv. Funct. Mater. 2014, 24, 3808; c) X. Zhou, M. Pfeiffer, J. S. Huang, J. Blochwitz-Nimoth, D. S. Qin, A. Werner, J. Drechsel, B. Maennig, K. Leo, Appl. Phys. Lett. 2002, 81, 922.
- 8a) T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, T. Someya, Nat. Mater. 2009, 8, 494; b) G. H. Gelinck, H. E. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. van der Putten, T. C. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. van Rens, D. M. de Leeuw, Nat. Mater. 2004, 3, 106; c) H. Park, D. S. Oh, K. J. Lee, D. Y. Jung, S. Lee, S. Yoo, S. Y. Choi, ACS Appl. Mater. Interfaces 2020, 12, 4749; d) S. Hwangbo, L. Hu, A. T. Hoang, J. Y. Choi, J. H. Ahn, Nat. Nanotechnol. 2022, 17, 500.
- 9H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, D. B. Chrisey, J. Appl. Phys. 1999, 86, 6451.
- 10S. Naka, H. Okada, H. Onnagawa, T. Tsutsui, Appl. Phys. Lett. 2000, 76, 197.
- 11O. E. Kwon, J. W. Shin, H. Oh, C. M. Kang, H. Cho, B. H. Kwon, C. W. Byun, J. H. Yang, K. M. Lee, J. H. Han, N. S. Cho, J. H. Yoon, S. J. Chae, J. S. Park, H. Lee, C. S. Hwang, J. Moon, J. I. Lee, J. Inf. Disp. 2020, 21, 49.
- 12Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Bredas, S. R. Marder, A. Kahn, B. Kippelen, Science 2012, 336, 327.
- 13a) J. S. Kim, B. J. Kim, Y. J. Choi, M. H. Lee, M. S. Kang, J. H. Cho, Adv. Mater. 2016, 28, 4803; b) H. Sojoudi, J. Baltazar, L. Tolbert, C. Henderson, S. Graham, Adv. Mater. Interfaces 2014, 1, 1400378; c) X. Huang, H. Yu, S. Shi, C. Huang, Org. Electron. 2019, 65, 311; d) H. Yu, X. Huang, C. Huang, Appl. Surf. Sci. 2019, 470, 318.
- 14a) Q. H. Wu, Y. Q. Zhao, G. Hong, J. G. Ren, C. D. Wang, W. J. Zhang, S. T. Lee, Carbon 2013, 65, 46; b) S. Sanders, A. Cabrero-Vilatela, P. R. Kidambi, J. A. Alexander-Webber, C. Weijtens, P. Braeuninger-Weimer, A. I. Aria, M. M. Qasim, T. D. Wilkinson, J. Robertson, S. Hofmann, J. Meyer, Nanoscale 2015, 7, 13135.
- 15a) S. Arscott, J. Micromech. Microeng. 2020, 30, 025003; b) L. E. Stillwagon, R. G. Larson, G. N. Taylor, J. Electrochem. Soc. 1987, 134, 2030.
- 16a) T. Earmme, S. A. Jenekhe, Adv. Funct. Mater. 2012, 22, 5126; b) Z. B. Wu, Y. Liu, E. J. Guo, G. Darbandy, S. J. Wang, R. Hubner, A. Kloes, H. Kleemann, K. Leo, Nat. Mater. 2021, 20, 1007.
- 17R. Steyrleuthner, M. Schubert, F. Jaiser, J. C. Blakesley, Z. Chen, A. Facchetti, D. Neher, Adv. Mater. 2010, 22, 2799.
- 18a) C. Lee, J. J. Kim, Small 2013, 9, 3858; b) Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang, W. Huang, Nature 2018, 562, 249.
- 19J. H. Yoo, J. B. Park, S. Ahn, C. P. Grigoropoulos, Small 2013, 9, 4269.
- 20a) L. Gao, G. X. Ni, Y. Liu, B. Liu, A. H. Castro Neto, K. P. Loh, Nature 2014, 505, 190; b) J. W. Suk, A. Kitt, C. W. Magnuson, Y. F. Hao, S. Ahmed, J. H. An, A. K. Swan, B. B. Goldberg, R. S. Ruoff, ACS Nano 2011, 5, 6916; c) S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, S. Iijima, Nat. Nanotechnol. 2010, 5, 574.
- 21D. D. Zhang, J. H. Du, Y. L. Hong, W. M. Zhang, X. Wang, H. Jin, P. L. Burn, J. Yu, M. L. Chen, D. M. Sun, M. Li, L. Q. Liu, L. P. Ma, H. M. Cheng, W. C. Ren, ACS Nano 2019, 13, 5513.
- 22X. Wang, C. Shi, Q. Guo, J. Chen, X. Qiao, D. Ma, T. Ahamad, S. M. Alshehri, S. S. Bae, J. Appl. Phys. 2017, 122, 125501.
- 23T. Y. Zhao, D. D. Zhang, T. Y. Qu, L. L. Fang, Q. B. Zhu, Y. Sun, T. H. Cai, M. L. Chen, B. W. Wang, J. H. Du, W. C. Ren, X. Yan, Q. W. Li, S. Qiu, D. M. Sun, ACS Appl. Mater. Interfaces 2019, 11, 11699.
- 24Q. B. Zhu, B. Li, D. D. Yang, C. Liu, S. Feng, M. L. Chen, Y. Sun, Y. N. Tian, X. Su, X. M. Wang, S. Qiu, Q. W. Li, X. M. Li, H. B. Zeng, H. M. Cheng, D. M. Sun, Nat. Commun. 2021, 12, 1798.
- 25P. E. Blochl, Phys. Rev. B 1994, 50, 17953.
- 26G. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169.
- 27a) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456; b) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.