Construction of Microfluidic Chip Structure for Cell Migration Studies in Bioactive Ceramics
Sheng Ye
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064 China
Search for more papers by this authorQuanle Cao
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064 China
Search for more papers by this authorPanxianzhi Ni
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064 China
Search for more papers by this authorShuting Xiong
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064 China
Search for more papers by this authorMeng Zhong
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064 China
Search for more papers by this authorCorresponding Author
Tun Yuan
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064 China
Sichuan Testing Centre for Biomaterials and Medical Devices, Chengdu, Sichuan, 610064 China
E-mail: [email protected]
Search for more papers by this authorJing Shan
Department of Gastroenterology, the 3rd People's Hospital of Chengdu, Southwest Jiaotong University, Chengdu, Sichuan, 610064 China
Search for more papers by this authorJie Liang
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064 China
Sichuan Testing Centre for Biomaterials and Medical Devices, Chengdu, Sichuan, 610064 China
Search for more papers by this authorYujiang Fan
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064 China
Search for more papers by this authorXingdong Zhang
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064 China
Search for more papers by this authorSheng Ye
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064 China
Search for more papers by this authorQuanle Cao
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064 China
Search for more papers by this authorPanxianzhi Ni
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064 China
Search for more papers by this authorShuting Xiong
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064 China
Search for more papers by this authorMeng Zhong
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064 China
Search for more papers by this authorCorresponding Author
Tun Yuan
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064 China
Sichuan Testing Centre for Biomaterials and Medical Devices, Chengdu, Sichuan, 610064 China
E-mail: [email protected]
Search for more papers by this authorJing Shan
Department of Gastroenterology, the 3rd People's Hospital of Chengdu, Southwest Jiaotong University, Chengdu, Sichuan, 610064 China
Search for more papers by this authorJie Liang
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064 China
Sichuan Testing Centre for Biomaterials and Medical Devices, Chengdu, Sichuan, 610064 China
Search for more papers by this authorYujiang Fan
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064 China
Search for more papers by this authorXingdong Zhang
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064 China
Search for more papers by this authorAbstract
Cell migration is an essential bioactive ceramics property and critical for bone induction, clinical application, and mechanism research. Standardized cell migration detection methods have many limitations, including a lack of dynamic fluid circulation and the inability to simulate cell behavior in vivo. Microfluidic chip technology, which mimics the human microenvironment and provides controlled dynamic fluid cycling, has the potential to solve these questions and generate reliable models of cell migration in vitro. In this study, a microfluidic chip is reconstructed to integrate the bioactive ceramic into the microfluidic chip structure to constitute a ceramic microbridge microfluidic chip system. Migration differences in the chip system are measured. By combining conventional detection methods with new biotechnology to analyze the causes of cell migration differences, it is found that the concentration gradients of ions and proteins adsorbed on the microbridge materials are directly related to the occurrence of cell migration behavior, which is consistent with previous reports and demonstrates the effectiveness of the microfluidic chip model. This model provides in vivo environment simulation and controllability of input and output conditions superior to standardized cell migration detection methods. The microfluidic chip system provides a new approach to studying and evaluating bioactive ceramics.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202302152-sup-0001-SuppMat.pdf1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Albrektsson, C. Johansson, Eur. Spine J. 2001, 10, S96.
- 2K.-C. Feng, Y.-J. Wu, C.-Y. Wang, C.-S. Tu, Y.-L. Lin, C.-S. Chen, P.-L. Lai, Y.-T. Huang, P. Y. Chen, Mater. Sci. Eng. C 2021, 124, 112060.
- 3M. Murata, J. Hino, M. A. Kabir, K. Yokozeki, M. Sakamoto, T. Nakajima, T. Akazawa, Materials 2021, 14, 196.
- 4H. Yuan, Z. Yang, Y. Li, X. Zhang, J. D. De Bruijn, K. De Groot, J. Mater. Sci.: Mater. Med. 1998, 9, 723.
- 5W. Wang, K. W. K. Yeung, Bioact. Mater. 2017, 2, 224.
- 6D. R. Campbell Jr, C. N. Senger, A. L. Ryan, C. M. Magin, Front. Med. 2021, 8, 383.
- 7G. Yang, Y. N. Kim, H. Kim, B. K. Lee, Tissue Eng. Regener. Med. 2021, 8, 383.
- 8H. Ma, C. Feng, C. Jiang, C. Wu, Acta Biomater. 2018, 79, 37.
- 9Y. Y. Filippov, E. D. Orlov, E. S. Klimashina, P. V. Evdokimov, T. V. Safronova, V. I. Putlayev, J. V. Rau, Bioact. Mater. 2020, 5, 309.
- 10F. Hulstaert, M. Neyt, I. Vinck, S. Stordeur, M. Huić, S. Sauerland, M. R. Kuijpers, P. Abrishami, H. Vondeling, B. Flamion, Int. J. Technol. Assess. Health Care 2012, 28, 278.
- 11S. Weinstein, N. A. Obuchowski, M. L. Lieber, Am. J. Roentgenol. 2005, 184, 14.
- 12L. Lamalice, F. L. e Boeuf, J. Huot, Circ. Res. 2007, 100, 782.
- 13S. Dekoninck, C. Blanpain, Nat. Cell Biol. 2019, 21, 18.
- 14F. Qu, F. Guilak, R. L. Mauck, Nat. Rev. Rheumatol. 2019, 15, 167.
- 15R. Horwitz, D. Webb, Curr. Biol. 2003, 13, R756.
- 16G. Song, P. Habibovic, C. Bao, J. Hu, C. A. van Blitterswijk, H. Yuan, W. Chen, H. H. K. Xu, Biomaterials 2013, 34, 2167.
- 17Y. Chen, J. Wang, X. Zhu, X. Chen, X. Yang, K. Zhang, Y. Fan, X. Zhang, Regener. Biomater. 2018, 5, 129.
- 18L. Fu, Q. Zhao, J. Li, Z. Zhao, M. Wang, H. Sun, H. Xia, Materials 2022, 15, 2569.
- 19P. Cohen, J. G. Hunsberger, A. Atala, Princ. Regener. Med. (3rd Ed.) 2019 1367, https://doi.org/10.1016/B978-0-12-809880-6.00078-3.
10.1016/B978-0-12-809880-6.00078-3 Google Scholar
- 20G. Jia, H. Huang, J. Niu, C. Chen, J. Weng, F. Yu, D. Wang, B. Kang, T. Wang, G. Yuan, H. Zeng, J. Magnesium Alloys 2021, 9, 1954.
- 21M. Kikuchi, Key Eng. Mater. 2012, 493, 836.
- 22Y. B. A. Kang, T. R. Sodunke, J. Lamontagne, J. Cirillo, C. Rajiv, M. J. Bouchard, M. Noh, Biotechnol. Bioeng. 2015, 112, 2571.
- 23N. S. Bhise, V. Manoharan, S. Massa, A. Tamayol, M. Ghaderi, M. Miscuglio, Q. Lang, Y. Shrike Zhang, S. R. Shin, G. Calzone, N. Annabi, T. D. Shupe, C. E. Bishop, A. Atala, M. R. Dokmeci, A. Khademhosseini, Biofabrication 2016, 8, 014101.
- 24M. Zhou, X. Zhang, X. Wen, T. Wu, W. Wang, M. Yang, J. Wang, M. Fang, B. Lin, H. Lin, Sci. Rep. 2016, 6, 31771.
- 25D. Huh, B. D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Y. Hsin, D. E. Ingber, Science 2010, 328, 1662.
- 26H. J. Kim, D. Huh, G. Hamilton, D. E. Ingber, Lab Chip 2012, 12, 2165.
- 27M. B. Chen, S. Srigunapalan, A. R. Wheeler, C. A. Simmons, Lab Chip 2013, 13, 2591.
- 28N. Jusoh, S. Oh, S. Kim, J. Kim, N. L. Jeon, Lab Chip 2015, 15, 3984.
- 29S. Bersini, J. S. Jeon, G. Dubini, C. Arrigoni, S. Chung, J. L. Charest, M. Moretti, R. D. Kamm, Biomaterials 2014, 35, 2454.
- 30Z. Lin, G. Luo, W. Du, T. Kong, C. Liu, Z. Liu, Small 2020, 16, 1903899.
- 31S. N. Bhatia, D. E. Ingber, Nat. Biotechnol. 2014, 32, 760.
- 32F. Zheng, F. Fu, Y. Cheng, C. Wang, Y. Zhao, Z. Gu, Small 2016, 12, 2253.
- 33J. A. Juhasz, S. M. Best, J. Mater. Sci. 2011, 47, 610.
- 34A. J. Salinas, M. Vallet-Regí, RSC Adv. 2013, 3, 11116.
- 35A. P. M. Guttenplan, Z. Tahmasebi Birgani, S. Giselbrecht, R. K. Truckenmüller, P. Habibović, Adv. Healthcare Mater. 2021, 10, 2100371.
- 36A. C. G. Weiss, K. Krüger, Q. A. Besford, M. Schlenk, K. Kempe, S. Förster, F. Caruso, ACS Appl. Mater. Interfaces 2019, 11, 2459.
- 37S. A. Castleberry, W. Li, D. Deng, S. Mayner, P. T. Hammond, ACS Nano 2014, 8, 6580.
- 38A. G. Koutsiaris, S. V. Tachmitzi, N. Batis, Microvasc. Res. 2013, 85, 34.
- 39A. M. Malek, S. L. Alper, S. Izumo, JAMA, J. Am. Med. Assoc. 1999, 282, 2035.
- 40C. P. Cheng, R. J. Herfkens, C. A. Taylor, Atherosclerosis 2003, 168, 323.
- 41C. P. Cheng, R. J. Herfkens, C. A. Taylor, J. Vascul. Surg. 2003, 37, 118.
- 42J. Wang, D. Liu, B. Guo, X. Yang, X. Chen, X. Zhu, Y. Fan, X. Zhang, Acta Biomater. 2017, 51, 447.
- 43S. Samavedi, A. R. Whittington, A. S. Goldstein, Acta Biomater. 2013, 9, 8037.
- 44A. Ehara, S. Ebisu, Y. Kinomoto, S. Imazato, Y. Umakoshi, K. Ogata, T. Nakano, J. Biomed. Mater. Res. A 2005, 72, 127.
- 45B. D. Riehl, J. S. Lee, L. Ha, I. K. Kwon, J. Y. Lim, PLoS One 2017, 12, e0171857.
- 46B. D. Riehl, J. S. Lee, L. Ha, J. Y. Lim, J. R. Soc., Interface 2015, 12, 20141315.
- 47K. Middleton, S. Al-Dujaili, X. Mei, A. Gunther, L. You, J. Biomech. 2017, 59, 35.
- 48C. Wei, X. Wang, Z. Ming, H. Cheng, Curr. Opin. Cell Biol. 2012, 24, 254.
- 49K. Minton, Nat. Rev. Mol. Cell Biol. 2014, 15, 152.
- 50C. Wei, X. Wang, M. Chen, K. Ouyang, L.-S. Song, H. Cheng, Nature 2009, 457, 901.
- 51B. Shua, A. Jl, C. Iss, A. Mro, D. Ycka, A. Hsh, B. Shr, E. Hjad, Bioact Mater 2021, 6, 3608.
- 52A. J. Ridley, M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. Thomas Parsons, A. R. Horwitz, Science 2003, 302, 1704.
- 53J. Wu, Z. Mao, H. Tan, L. Han, T. Ren, C. Gao, Interface Focus 2012, 2, 337.
- 54P. Artimo, M. Jonnalagedda, K. Arnold, D. Baratin, G. Csardi, E. de Castro, S. Duvaud, V. Flegel, A. Fortier, E. Gasteiger, A. Grosdidier, C. Hernandez, V. Ioannidis, D. Kuznetsov, R. Liechti, S. Moretti, K. Mostaguir, N. Redaschi, G. Rossier, I. Xenarios, H. Stockinger, Nucleic Acids Res. 2012, 40, W597.
- 55S. Shivani, Y. H. Hsu, C.-J. Lee, C.-S. Cheong, T.-T. Chung, A.-B. Wang, Front. Cell Dev. Biol. 2022, 10, 825791.
- 56D. M. C. Benjamin, G. Keselowsky, A. J. García, J. Biomed. Mater. Res. Part A 2003, 66A, 247.
- 57T. S. Tsapikouni, Y. F. Missirlis, Mater. Sci. Eng. 2008 152, 2.
- 58E. Fujii, M. Ohkubo, K. Tsuru, S. Hayakawa, A. Osaka, K. Kawabata, C. Bonhomme, F. Babonneau, Acta Biomater. 2006, 2, 69.
- 59T. J. Webster, C. Ergun, R. H. Doremus, R. W. Siegel, R. Bizios, J. Biomed. Mater. Res. 2000, 51, 475.
- 60B. Li, X. Liao, L. Zheng, X. Zhu, Z. Wang, H. Fan, X. Zhang, Acta Biomater. 2012, 8, 3794.
- 61R. G. Bacabac, T. H. Smit, S. C. Cowin, J. J. W. A. Van Loon, F. T. M. Nieuwstadt, R. Heethaar, J. Klein-Nulend, J. Biomech. 2005, 38, 159.
- 62Y. Shin, S. Han, J. S. Jeon, K. Yamamoto, I. K. Zervantonakis, R. Sudo, R. D. Kamm, S. Chung, Nat. Protoc. 2012, 7, 1247.
- 63Y.-W. Won, A. N. Patel, D. A. Bull, Biomaterials 2014, 35, 5627.
- 64I. Zakharova, S. Saaya, A. Shevchenko, A. Stupnikova, M. Zhiven, P. Laktionov, A. Stepanova, A. Romashchenko, L. Yanshole, A. Chernonosov, A. Volkov, E. Kizilova, E. Zavjalov, A. Chernyavsky, A. Romanov, A. Karpenko, S. Zakian, Front. Bioeng. Biotechnol. 2022, 10, 15.
10.3389/fbioe.2022.772981 Google Scholar
- 65M. J. Waring, Nature 1968, 219, 1320.
- 66S. Tharmalingam, D. R. Hampson, Front. Physiol. 2016, 7, 190.
- 67A. C. Callan-Jones, R. Voituriez, Curr. Opin. Cell Biol. 2016, 38, 12.