Nonconventional Luminescent Piperazine-Containing Hyperbranched Polysiloxanes with Pure n-electron
Corresponding Author
Yuqun Du
School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi, 030051 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYiwei Liu
School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi, 030051 China
Search for more papers by this authorJangwei Li
School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi, 030051 China
Search for more papers by this authorYanyun He
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian, Shaanxi, 710129 China
Search for more papers by this authorYanbin Li
School of Basic Medical Sciences, Zhaoqing Medical College, Zhaoqing, Guangdong, 526000 China
Search for more papers by this authorCorresponding Author
Hongxia Yan
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian, Shaanxi, 710129 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yuqun Du
School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi, 030051 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYiwei Liu
School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi, 030051 China
Search for more papers by this authorJangwei Li
School of Chemistry and Chemical Engineering, North University of China, Taiyuan, Shanxi, 030051 China
Search for more papers by this authorYanyun He
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian, Shaanxi, 710129 China
Search for more papers by this authorYanbin Li
School of Basic Medical Sciences, Zhaoqing Medical College, Zhaoqing, Guangdong, 526000 China
Search for more papers by this authorCorresponding Author
Hongxia Yan
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian, Shaanxi, 710129 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Nonconventional luminogens with high quantum yield (QY) possess very potential applications in various fields. However, the preparation of such luminogens remains a great challenge. Herein, the first example of piperazine-containing hyperbranched polysiloxane exhibiting blue and green fluorescence is reported under the irradiation of different excitation wavelength and a high QY of 20.9%. The density functional theory (DFT) calculations and experimental results revealed that the through-space conjugation (TSC) within the clusters of N and O atoms is produced via the induction of multiple intermolecular hydrogen bonds and flexible SiO units, which is accountable for the fluorescence. Meanwhile, the introduction of the rigid piperazine units not only rigidifies the conformation, but also enhances the TSC. In addition, the fluorescence of both P1 and P2 shows concentration-, excitation-, and solvent-dependent emission, especially exhibits significant pH-dependent emission and obtains an ultrahigh QY of 82.6% at pH 5. The synthetic luminogens show excellent applications in fluorescence detection for Fe3+ and Co2+, information encryption, and fluorescent film. This study provides a novel strategy to rationally design high-efficiency nonconventional luminogens.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202302095-sup-0001-SuppMat.pdf1.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Chen, J. W. Y. Lam, R. T. K. Kwok, B. Liu, B. Z. Tang, Mater. Horiz. 2019, 6, 428.
- 2J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718.
- 3D. A. Tomalia, B. Klajnert-Maculewicz, K. A. M. Johnson, H. F. Brinkman, A. Janaszewska, D. M. Hedstrand, Prog. Polym. Sci. 2019, 90, 35.
- 4J. Deng, H. Jia, W. Xie, H. Wu, J. Li, H. Wang, Macromol. Chem. Phys. 2022, 223, 2100425.
- 5L. Guo, L. Yan, Y. He, W. Feng, Y. Zhao, B. Z. Tang, H. Yan, Angew. Chem., Int. Ed. 2022, 134, 202204383.
10.1002/ange.202204383 Google Scholar
- 6F. Kausar, Z. Zhao, T. Yang, W. Hou, Y. Li, Y. Zhang, W. Z. Yuan, Macromol. Rapid Commun. 2021, 42, 2100036.
- 7Z. Zhang, H. Zhang, M. Kang, N. Li, D. Wang, B. Z. Tang, Sci. China Chem. 2021, 64, 1990.
- 8Q. Zhou, B. Cao, C. Zhu, S. Xu, Y. Gong, W. Z. Yuan, Y. Zhang, Small 2016, 12, 6586.
- 9S. Tang, T. Yang, Z. Zhao, T. Zhu, Q. Zhang, W. Hou, W. Z. Yuan, Chem. Soc. Rev. 2021, 5, 12616.
10.1039/D0CS01087A Google Scholar
- 10N. Jiang, D. Zhu, Z. Su, M. R. Bryce, Mater. Chem. Front. 2021, 5, 60.
- 11X. Dou, Q. Zhou, X. Chen, Y. Tan, X. He, P. Lu, K. Sui, B. Z. Tang, Y. Zhang, W. Z. Yuan, Biomacromolecules 2018, 19, 2014.
- 12T. Yang, Y. Li, Z. Zhao, W. Z. Yuan, Sci. China Chem. 2023, 66, 367.
- 13C. L. Larson, S. A. Tucker, Appl. Spectrosc. 2001, 55, 679.
- 14W. I. Lee, Y. Bae, A. J. Bard, J. Am. Chem. Soc. 2004, 126, 8358.
- 15Y. Du, H. Yan, S. Niu, L. Bai, F. Chai, RSC Adv. 2016, 6, 88030.
- 16D. Wu, Y. Liu, C. He, S. H. Goh, Macromolecules 2005, 38, 9906.
- 17M. Sun, C. Hong, C. Pan, J. Am. Chem. Soc. 2012, 134, 20581.
- 18B. Chu, H. Zhang, K. Chen, B. Liu, Q. Yu, C. Zhang, J. Sun, Q. Yang, X. Zhang, B. Z. Tang, J. Am. Chem. Soc. 2022, 144, 15286.
- 19B. Chu, H. Zhang, L. Hu, B. Liu, C. Zhang, X. Zhang, B. Z. Tang, Angew. Chem., Int. Ed. 2022, 134.
- 20Y. Du, H. Yan, W. Huang, F. Chai, S. Niu, ACS Sustainable Chem. Eng. 2017, 5, 6139.
- 21S. Niu, H. Yan, S. Li, P. Xu, X. Zhi, T. Li, Macromol. Chem. Phys. 2016, 217, 1185.
- 22L. Bai, Y. Zhang, H. Yan, X. Liu, Biomacromolecules 2022, 23, 4617.
- 23Y. Zuo, Z. Gou, W. Quan, W. Lin, Coord. Chem. Rev. 2021, 438, 213887.
- 24H. Lu, L. Feng, S. Li, J. Zhang, H. Lu, S. Feng, Macromolecules 2015, 48, 476.
- 25S. Niu, H. Yan, Z. Chen, S. Li, P. Xu, X. Zhi, Polym. Chem. 2016, 7, 3747.
- 26Y. Feng, T. Bai, H. Yan, F. Ding, L. Bai, W. Feng, Macromolecules 2019, 52, 3075.
- 27S. Niu, H. Yan, Z. Chen, L. Yuan, T. Liu, C. Liu, Macromol. Rapid Commun. 2016, 37, 136.
- 28Y. He, F. Ding, Y. Zhao, W. Tian, W. Feng, H. Yan, Polym. Chem. 2022, 13, 6534.
- 29Y. Feng, H. Yan, F. Ding, T. Bai, Y. Nie, Y. Zhao, W. Fengand, B. Tang, Mater. Chem. Front. 2020, 4, 1375.
- 30T. Bai, H. Yan, Y. Zhang, L. Guo, Y. Zhao, J. Phys. Chem. B 2021, 125, 4321.
- 31H. Zhang, B. Z. Tang, JACS Au 2021, 1, 1805.
- 32Z. Zhang, Z. Xiong, B. Chu, Z. Zhang, Y. Xie, L. Wang, J. Z. Sun, H. Zhang, X. H. Zhang, B. Z. Tang, Aggregate 2022, 3, 2692.
- 33S. Niu, H. Yan, Z. Chen, Y. Du, W. Huang, L. Bai, Q. Lv, RSC Adv. 2016, 6, 106742.
- 34S. Niu, H. Yan, S. Li, C. Tang, Z. Chen, X. Zhi, P. Xu, J. Mater. Chem. C 2016, 4, 6881.
- 35Y. Du, T. Bai, F. Ding, H. Yan, Y. Zhao, W. Feng, Polym. J. 2019, 51, 869.
- 36X. Li, M. Li, M. Yang, H. Xiao, L. Wang, Z. Chen, S. Liu, J. Li, S. Li, T. D. James, Coord. Chem. Rev. 2020, 418, 213358.
- 37B. Saha, B. Ruidas, S. Mete, C. D. Mukhopadhyay, K. Bauri, P. De, Chem. Sci. 2020, 11, 141.
- 38Y. Zhao, J. Long, P. Zhuang, Y. Ji, C. He, H. Wang, J. Mater. Chem. C 2022, 10, 1010.
- 39E. Zhao, J. W. Y. Lam, L. Meng, Y. Hong, H. Deng, G. Bai, X. Huang, J. Hao, B. Z. Tang, Macromolecules 2014, 48, 64.
- 40R. A. Beecroft, R. S. Davidson, J. Chem. Soc., Perkin Trans. 2 1985, 2, 1063.
10.1039/p29850001063 Google Scholar
- 41J. Yan, B. Zheng, D. Pan, R. Yang, Y. Xu, L. Wang, M. Yang, Polym. Chem. 2015, 6, 6133.
- 42H. Lu, J. Zhang, S. Feng, Phys. Chem. Chem. Phys. 2015, 17, 26783.
- 43L. Pastor-Pérez, Y. Chen, Z. Shen, A. Lahoz, S. Stiriba, Macromol. Rapid Commun. 2007, 28, 1404.
- 44S. Shiau, T. Juang, H. Chou, M. Liang, Polymer 2013, 54, 623.
- 45R. B. Restani, P. I. Morgado, M. P. Ribeiro, I. J. Correia, A. Aguiar-Ricardo, V. D. B. Bonifácio, Angew. Chem., Int. Ed. 2012, 51, 5162.
- 46D. Wang, T. Imae, J. Am. Chem. Soc. 2004, 126, 13204.
- 47D. I. Malyarenko, R. L. Vold, G. L. Hoatson, Macromolecules 2000, 33, 1268.
- 48X. Miao, T. Liu, C. Zhang, X. Geng, Y. Meng, X. Li, Phys. Chem. Chem. Phys. 2016, 18, 4295.
- 49H. Cao, B. Li, X. Jiang, X. Zhu, X. Z. Kong, Chem. Eng. J. 2020, 399, 125867.
- 50K. Liu, P. Han, S. Yu, X. Wu, Y. Tian, Q. Liu, J. Wang, M. Zhang, C. Zhao, Macromolecules 2022, 55, 8599.