A Multidrug Delivery Microrobot for the Synergistic Treatment of Cancer
Yanfang Li
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077 China
Search for more papers by this authorDingran Dong
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077 China
Search for more papers by this authorYun Qu
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077 China
Search for more papers by this authorJunyang Li
Center for Robotics and Automation, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518000 China
Department of Electronic Engineering, Ocean University of China, Qingdao, 266000 China
Search for more papers by this authorShuxun Chen
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077 China
Search for more papers by this authorHan Zhao
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077 China
Search for more papers by this authorQi Zhang
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077 China
Search for more papers by this authorYang Jiao
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077 China
Search for more papers by this authorLei Fan
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077 China
Center for Robotics and Automation, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518000 China
Search for more papers by this authorCorresponding Author
Dong Sun
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077 China
Center for Robotics and Automation, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518000 China
E-mail: [email protected]
Search for more papers by this authorYanfang Li
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077 China
Search for more papers by this authorDingran Dong
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077 China
Search for more papers by this authorYun Qu
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077 China
Search for more papers by this authorJunyang Li
Center for Robotics and Automation, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518000 China
Department of Electronic Engineering, Ocean University of China, Qingdao, 266000 China
Search for more papers by this authorShuxun Chen
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077 China
Search for more papers by this authorHan Zhao
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077 China
Search for more papers by this authorQi Zhang
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077 China
Search for more papers by this authorYang Jiao
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077 China
Search for more papers by this authorLei Fan
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077 China
Center for Robotics and Automation, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518000 China
Search for more papers by this authorCorresponding Author
Dong Sun
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077 China
Center for Robotics and Automation, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518000 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Multidrug combination therapy provides an effective strategy for malignant tumor treatment. This paper presents the development of a biodegradable microrobot for on-demand multidrug delivery. By combining magnetic targeting transportation with tumor therapy, it is hypothesized that loading multiple drugs on different regions of a single magnetic microrobot can enhance a synergistic effect for cancer treatment. The synergistic effect of using two drugs together is greater than that of using each drug separately. Here, a 3D-printed microrobot inspired by the fish structure with three hydrogel components: skeleton, head, and body structures is demonstrated. Made of iron oxide (Fe3O4) nanoparticles embedded in poly(ethylene glycol) diacrylate (PEGDA), the skeleton can respond to magnetic fields for microrobot actuation and drug-targeted delivery. The drug storage structures, head, and body, made by biodegradable gelatin methacryloyl (GelMA) exhibit enzyme-responsive cargo release. The multidrug delivery microrobots carrying acetylsalicylic acid (ASA) and doxorubicin (DOX) in drug storage structures, respectively, exhibit the excellent synergistic effects of ASA and DOX by accelerating HeLa cell apoptosis and inhibiting HeLa cell metastasis. In vivo studies indicate that the microrobots improve the efficiency of tumor inhibition and induce a response to anti-angiogenesis. The versatile multidrug delivery microrobot conceptualized here provides a way for developing effective combination therapy for cancer.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202301889-sup-0001-SuppMat.pdf687.3 KB | Supporting Information |
smll202301889-sup-0002-MovieS1.mp425.4 MB | Supplemental Movie 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Okuda, S. Kidoaki, J Biomater Nanobiotechnol 2012, 2012, 50.
10.4236/jbnb.2012.31007 Google Scholar
- 2C. Vakifahmetoglu, D. Zeydanli, V. C. Ozalp, B. A. Borsa, G. D. Soraru, Mater. Des. 2018, 140, 37.
- 3S. J. Liu, S. T. Yang, S. M. Chen, Y. C. Huang, W. H. Lee, J. Ho, Y. C. Chen, Y. Y. Tseng, Ther Adv Med Oncol 2019, 11, https://doi.org/10.1177/1758835919875555.
10.1177/1758835919875555 Google Scholar
- 4Y. Tang, F. Soroush, Z. Tong, M. F. Kiani, B. Wang, Int. J. Nanomed. 2017, 2017, 671.
10.2147/IJN.S124770 Google Scholar
- 5Y. Q. Guan, Z. Zheng, Z. Huang, Z. Li, S. Niu, J. M. Liu, Sci. Rep. 2014, 4, 4990.
- 6T. O. Harasym, B. D. Liboiron, L. D. Mayer, Methods Mol Biol, 596, Springer, New York 2010.
- 7J. Jia, F. Zhu, X. Ma, Z. W. Cao, Y. X. Li, Y. Z. Chen, Nat. Rev. Drug Discovery 2009, 8, 111.
- 8R. Rajeswari, R. Jothilakshmi, Mater. Sci. Forum 2015, 807, 1.
10.4028/www.scientific.net/MSF.807.1 Google Scholar
- 9M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall, K. A. Dawson, Proc. Natl. Acad. Sci. USA 2008, 105, 14265.
- 10Y. H. Bae, K. Park, J. Controlled Release 2011, 153, 198.
- 11W. Zheng, C. Liu, J. Jin, W. Sun, J. Zhao, M. Zhao, S. Yao, B. Zhu, F. Chen, J. Shang, K. Wang, P. Guo, J. Qin, X. Cheng, PNAS Nexus 2022, 1, pgac087.
- 12W. Sun, P. E. Sanderson, W. Zheng, Drug Discov Today 2016, 21, 1189.
- 13Z. Wang, Z. Xu, B. Zhu, Y. Zhang, J. Lin, Y. Wu, D. Wu, Nanotechnology 2022, 33, 152001.
- 14V. Magdanz, S. Sanchez, O. G. Schmidt, Adv. Mater. 2013, 25, 6581.
- 15D. Jang, J. Jeong, H. Song, S. K. Chung, J. Micromechanics Microengineering 2019, 29, 053002.
- 16Y. Alapan, O. Yasa, M. Sitti, P. Erkoc, I. C. Yasa, H. Ceylan, Adv. Ther. 2018, 2, 1800064.
- 17J. Park, C. Jin, S. Lee, J. Y. Kim, H. Choi, Adv. Healthcare Mater. 2019, 8, 1900213.
- 18J. B. Lee, K. H. Choi, K. Yoo, Micromachines 2015, 6, 1.
- 19Z. Chen, J. B. Lee, Micromachines 2021, 12, 794.
- 20P. Golvari, S. M. Kuebler, Micromachines 2021, 12, 472.
- 21J. F. Travaglia, P. Nugus, D. Greenfield, J. Westbrook, J. Braithwaite, Int. J. Qual. Heal. Care 2011, 23, 629.
- 22Y. Li, S. Park, M. McLamb, M. Lata, S. Schöche, D. Childers, I. D. Aggarwal, M. K. Poutous, G. Boreman, T. Hofmann, Opt. Mater. Express 2019, 9, 4318.
- 23S. Puce, E. Sciurti, F. Rizzi, B. Spagnolo, A. Qualtieri, M. De Vittorio, U. Staufer, Micro Nano Eng 2019, 2, 70.
10.1016/j.mne.2019.01.004 Google Scholar
- 24K. Kurselis, R. Kiyan, V. N. Bagratashvili, V. K. Popov, B. N. Chichkov, Opt. Express 2013, 21, 31029.
- 25W. Zhang, P. Soman, K. Meggs, X. Qu, S. Chen, Adv. Funct. Mater. 2013, 23, 3226.
- 26X. Gou, M. Zheng, Y. Zhao, X. Dong, F. Jin, J. Xing, X. Duan, Appl. Surf. Sci. 2017, 416, 273.
- 27S. Engelhardt, E. Hoch, K. Borchers, W. Meyer, H. Krüger, G. E. M. Tovar, A. Gillner, Biofabrication 2011, 3, 025003.
- 28X. Wang, X. H. Qin, C. Hu, A. Terzopoulou, X. Z. Chen, T. Y. Huang, K. Maniura-Weber, S. Pané, B. J. Nelson, Adv. Funct. Mater. 2018, 28, 1.
- 29Z. C. Ma, Y. L. Zhang, B. Han, X. Y. Hu, C. H. Li, Q. D. Chen, H. B. Sun, Nat. Commun. 2020, 11, 4536.
- 30S. J. Park, Y. K. Lee, S. Cho, S. Uthaman, I. K. Park, J. J. Min, S. Y. Ko, J. O. Park, S. Park, Biotechnol. Bioeng. 2015, 112, 769.
- 31G. Go, A. Yoo, H. W. Song, H. K. Min, S. Zheng, K. T. Nguyen, S. Kim, B. Kang, A. Hong, C. S. Kim, J. O. Park, E. Choi, ACS Nano 2021, 15, 1059.
- 32S. Tottori, L. Zhang, F. Qiu, K. K. Krawczyk, A. Franco-Obregõn, B. J. Nelson, Adv. Mater. 2012, 24, 811.
- 33J. Park, J. young Kim, S. Pané, B. J. Nelson, H. Choi, Adv. Healthcare Mater. 2021, 10, 2001096.
- 34C. Liao, A. Wuethrich, M. Trau, Appl. Mater. Today 2020, 19, 100635.
- 35T. Wei, J. Liu, D. Li, S. Chen, Y. Zhang, J. Li, L. Fan, Z. Guan, C. M. Lo, L. Wang, K. Man, D. Sun, Small 2020, 16, 1.
- 36L. M. Martins, C. S. de Melo Escorcio Dourado, L. M. Campos-Verdes, F. A. Sampaio, C. M. S. Revoredo, D. R. Costa-Silva, M. da Conceição Barros-Oliveira, E. de Jesus Nery Junior, L. M. do Rego-Medeiros, L. H. Gebrim, F. A. Alves-Ribeiro, G. P. Rodrigues, D. C. Chagas, D. do Nascimento Marreiro, B. B. Da Silva, OncoTargets Ther. 2019, 10, 6879.
10.18632/oncotarget.27347 Google Scholar
- 37L. Zhao, H. Niu, Y. Liu, L. Wang, N. Zhang, G. Zhang, R. Liu, M. Han, J Cancer 2019, 10, 6481.
- 38M. X. Sun, F. Yu, M. L. Gong, G. L. Fan, C. X. Liu, Riv. Eur. Sci. Med. Farmacol. 2018, 22, 5033.
- 39M. H. Wu, C. L. Lin, H. L. Chiou, S. F. Yang, C. Y. Lin, C. J. Liu, Y. H. Hsieh, Int. J. Mol. Sci. 2018, 19, 10.
10.3390/ijms19010010 Google Scholar
- 40J. Li, X. Li, T. Luo, R. Wang, C. Liu, S. Chen, D. Li, J. Yue, S. H. Cheng, D. Sun, Sci Robot 2018, 3, 1.
- 41H. J. Lee, J. M. Kim, K. H. Kim, J. I. Heo, S. J. Kwak, J. A. Han, Cell Death Differ. 2015, 22, 86.
- 42N. Mohammad, S. Vikram Singh, P. Malvi, B. Chaube, D. Athavale, M. Vanuopadath, S. S. Nair, B. Nair, M. K. Bhat, Sci. Rep. 2015, 5, 11853.
- 43 Red blood cell – Libre Pathology, n.d.
- 44R. Berry, C. D. Church, M. T. Gericke, E. Jeffery, L. Colman, M. S. Rodeheffer, Methods Enzymol 2014, 537, 47.
- 45M. B. Browning, S. N. Cereceres, P. T. Luong, E. M. Cosgriff-Hernandez, J. Biomed. Mater. Res. – Part A 2014, 102, 4244.
- 46M. Sun, X. Sun, Z. Wang, S. Guo, G. Yu, H. Yang, Polymers (Basel) 2018, 10, 1290.
- 47Z. Luo, W. Sun, J. Fang, K. J. Lee, S. Li, Z. Gu, M. R. Dokmeci, A. Khademhosseini, Adv. Healthcare Mater. 2019, 8, 1.
- 48A. Dicko, L. D. Mayer, P. G. Tardi, Expert Opin Drug Deliv 2010, 7, 1329.
- 49K. Yue, G. Trujillo-de Santiago, M. M. Alvarez, A. Tamayol, N. Annabi, A. Khademhosseini, Biomaterials 2015, 73, 254.
- 50Y. Lu, Y. J. Xu, G. B. Zhang, D. Ling, M. Q. Wang, Y. Zhou, Y. D. Wu, T. Wu, M. J. Hackett, B. H. Kim, H. Chang, J. Kim, X. T. Hu, L. Dong, N. Lee, F. Li, J. C. He, L. Zhang, H. Q. Wen, B. Yang, S. H. Choi, T. Hyeon, D. H. Zou, Nat. Biomed. Eng. 2017, 1, 637.
- 51V. Iacovacci, A. Blanc, H. Huang, L. Ricotti, R. Schibli, A. Menciassi, M. Behe, S. Pané, B. J. Nelson, Small 2019, 15, 1900709.
- 52Z. Meng, X. Zhou, J. She, Y. Zhang, L. Feng, Z. Liu, Nano Lett. 2019, 19, 8109.
- 53F. Suligoj, C. M. Heunis, S. Mohanty, S. Misra, IEEE Trans. Biomed. Eng. 2022, 69, 3739.
- 54Z. Wu, L. Li, Y. Yang, P. Hu, Y. Li, S.-Y. Yang, L. V. Wang, W. Gao, Sci Robot 2019, 4, eaax0613.
- 55Z. Hosseinaee, M. Le, K. Bell, P. H. Reza, J. Photoacoust. 2020, 20, 100207.