Surface Self-Transforming FeTi-LDH Overlayer in Fe2O3/Fe2TiO5 Photoanode for Improved Water Oxidation
Juliette Chancellevie Nalouzebi Fouemina
Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
Search for more papers by this authorGuoqing Li
Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
Search for more papers by this authorXiaojie She
Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077 P. R. China
Search for more papers by this authorDuan Yan
Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
Search for more papers by this authorXiaoxin Lv
Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
Search for more papers by this authorKaiqi Nie
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Jiujun Deng
Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hui Xu
Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJuliette Chancellevie Nalouzebi Fouemina
Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
Search for more papers by this authorGuoqing Li
Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
Search for more papers by this authorXiaojie She
Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077 P. R. China
Search for more papers by this authorDuan Yan
Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
Search for more papers by this authorXiaoxin Lv
Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
Search for more papers by this authorKaiqi Nie
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Jiujun Deng
Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Hui Xu
Institute for Energy Research, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Integrating hematite nanostructures with efficient layer double hydroxides (LDHs) is highly desirable to improve the photoelectrochemical (PEC) water oxidation performance. Here, an innovative and facile strategy is developed to fabricate the FeTi-LDH overlayer decorated Fe2O3/Fe2TiO5 photoanode via a surface self-transformation induced by the co-treatment of hydrazine and NaOH at room temperature. Electrochemical measurements find that this favorable structure can not only facilitate the charge transfer/separation at the electrode/electrolyte interface but also accelerate the surface water oxidation kinetics. Consequently, the as-obtained Fe2O3/Fe2TiO5/LDH photoanode exhibits a remarkably increased photocurrent density of 3.54 mA cm−2 at 1.23 V versus reversible hydrogen electrode (RHE) accompanied by an obvious cathodic shift (≈140 mV) in the onset potential. This work opens up a new and effective pathway for the design of high-performance hematite photoanodes toward efficient PEC water oxidation.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202301114-sup-0001-SuppMat.pdf1.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem Rev 2010, 110, 6446.
- 2C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, J. Tang, Chem. Soc. Rev. 2017, 46, 4645.
- 3Y. Yang, S. Niu, D. Han, T. Liu, G. M. Wang, Y. Li, Adv. Energy Mater. 2017, 7, 1700555.
- 4J. Liu, Z. Luo, X. Mao, Y. Dong, L. Peng, D. Sun-Waterhouse, J. V. Kennedy, G. I. N. Waterhouse, Small 2022, 18, 2204553.
- 5K. Sivula, F. Le Formal, M. Grätzel, ChemSusChem 2011, 4, 432.
- 6A. G. Tamirat, J. Rick, A. A. Dubale, W.-N. Su, B.-J. Hwang, Nanoscale Horiz. 2016, 1, 243.
- 7C. Li, Z. Luo, T. Wang, J. S. Gong, Adv. Mater. 2018, 30, 1707502.
- 8D. Zhou, K. Fan, Chin. J. Catal. 2021, 42, 904.
- 9Š. Kment, K. Sivula, A. Naldoni, S. P. Sarmah, H. Kmentová, M. Kulkarni, Y. Rambabu, P. Schmuki, R. Zbořil, Prog. Mater. Sci. 2020, 110, 100632.
- 10S. Shen, S. A. Lindley, X. Chen, J. Z. Zhang, Energy Environ. Sci. 2016, 9, 2744.
- 11X. Lv, K. Nie, H. Lan, X. Li, Y. Li, X. Sun, J. Zhong, S.-T. Lee, Nano Energy 2017, 32, 526.
- 12C. Li, T. Wang, Z. Luo, S. Liu, J. Gong, Small 2016, 12, 3415.
- 13L. Wang, N. T. Nguyen, X. Huang, P. Schmuki, Y. Bi, Adv. Funct. Mater. 2017, 27, 1703527.
- 14Q. Wang, D. O'Hare, Chem. Rev. 2012, 112, 4124.
- 15Z. Cai, X. Bu, P. Wang, J. C. Ho, J. Yang, X. Wang, J. Mater. Chem. A 2019, 7, 5069.
- 16C. Wang, X. Long, S. Wei, T. Wang, F. Li, L. Gao, Y. Hu, S. Li, J. Jin, ACS Appl. Mater. Interfaces 2019, 11, 29799.
- 17S. Bai, H. Chu, X. Xiang, R. Luo, J. He, A. Chen, Chem. Eng. J. 2018, 350, 148.
- 18Y. B. Park, J. H. Kim, Y. J. Jang, J. H. Lee, M. H. Lee, B. J. Lee, D. H. Youn, J. S. Lee, ChemCatChem 2019, 11, 443.
- 19D. Xu, Y. Rui, Y. Li, Q. Zhang, H. Wang, Appl. Surf. Sci. 2015, 358, 436.
- 20R. Chong, G. Wang, Y. Du, Y. Jia, X. Wang, C. Li, Z. Chang, L. Zhang, Chem. Eng. J. 2019, 366, 523.
- 21J. Huang, G. Hu, Y. Ding, M. Pang, B. Ma, J. Catal. 2016, 340, 261.
- 22X. Zhang, X. Wang, X. Yi, J. Ye, D. Wang, ACS Sustainable Chem. Eng. 2019, 7, 5420.
- 23Z. P. Xu, G. Q. Lu, Chem. Mater. 2005, 17, 1055.
- 24J. Xie, P. Yang, X. Liang, J. Xiong, ACS Appl. Energy Mater. 2018, 1, 2769.
- 25K. Ishikawa, T. Yoshioka, T. Sato, A. Okuwaki, Hydrometallurgy 1997, 45, 129.
- 26P. Zhang, Z. Zhang, W. Li, M. Zhu, Appl. Surf. Sci. 2013, 268, 381.
- 27W. Qiu, Y. Huang, B. Long, H. Li, Y. Tong, H. Ji, Chem. - Eur. J. 2015, 21, 19250.
- 28S. Chen, Q. Zeng, J. Bai, J. Li, L. Li, L. Xia, B. Zhou, Appl. Catal., B 2017, 218, 690.
- 29T. Szatkowski, M. Wysokowski, G. Lota, D. Pęziak, V. V. Bazhenov, G. Nowaczyk, J. Walter, S. L. Molodtsov, H. Stöcker, C. Himcinschi, I. Petrenko, A. L. Stelling, S. Jurga, T. Jesionowski, H. Ehrlich, RSC Adv. 2015, 5, 79031.
- 30H. G. Cha, H. S. Noh, M. J. Kang, Y. S. Kang, New J. Chem. 2013, 37, 4004.
- 31F. Ning, M. Shao, S. Xu, Y. Fu, R. Zhang, M. Wei, D. G. Evans, X. Duan, Energy Environ. Sci. 2016, 9, 2633.
- 32B. Kang, M. B. Hussain, X. Cheng, C. Peng, Z. Wang, J. Colloid Interface Sci. 2022, 626, 146.
- 33S. Zhao, D. Zhang, S. Jiang, Y. Cui, H. Li, J. Dong, Z. Xie, D.-W. Wang, R. Amal, Z. Xia, L. Dai, Nano Res. 2021, 14, 3329.
- 34J. Deng, Q. Zhang, X. Lv, D. Zhang, H. Xu, D. Ma, J. Zhong, ACS Energy Lett. 2020, 5, 975.
- 35S. Shao, Y. Xiao, J. Yang, X. Lv, K. Feng, Y. Xia, D. Zhang, H. Xu, J. Zhong, J. Deng, Chem. Eng. J. 2021, 413, 127416.
- 36Y. Ye, J. E. Thorne, C. H. Wu, Y.-S. Liu, C. Du, J.-W. Jang, E. Liu, D. Wang, J. Guo, J. Phys. Chem. B 2018, 122, 927.
- 37Y. Fu, C.-L. Dong, W. Zhou, Y.-R. Lu, Y.-C. Huang, Y. Liu, P. Guo, L. Zhao, W.-C. Chou, S. Shen, Appl. Catal., B 2020, 260, 118206.
- 38L. Han, X. Peng, H.-T. Wang, P. Ou, Y. Mi, C.-W. Pao, J. Zhou, J. Wang, X. Liu, W.-F. Pong, J. Song, Z. Lin, J. Luo, H. L. Xin, Proc. Natl. Acad. Sci. USA 2022, 119, e2207326119.
- 39M. Bhavanari, K.-R. Lee, C.-J. Tseng, B.-J. Su, J.-M. Chen, J.-K. Chang, A. J. Bhattacharyya, C.-Y. Su, J. Environ. Chem. Eng. 2022, 10, 107287.
- 40J. Deng, X. Lv, H. Zhang, B. Zhao, X. Sun, J. Zhong, Phys. Chem. Chem. Phys. 2016, 18, 10453.
- 41S. Y. Chen, A. Gloter, A. Zobelli, L. Wang, C. H. Chen, C. Colliex, Phys. Rev. B 2009, 79, 104103.
- 42C. P. Saini, A. Barman, D. Banerjee, O. Grynko, S. Prucnal, M. Gupta, D. M. Phase, A. K. Sinha, D. Kanjilal, W. Skorupa, A. Kanjilal, J. Phys. Chem. C 2017, 121, 11448.
- 43G. Jia, Y. Wang, X. Cui, H. Zhang, J. Zhao, L. H. Li, L. Gu, Q. Zhang, L. Zheng, J. Wu, Q. Wu, D. J. Singh, W. Li, L. Zhang, W. Zheng, Matter 2022, 5, 206.
- 44D. Wang, J. Zhou, Y. Hu, J. Yang, N. Han, Y. Li, T.-K. Sham;, J. Phys. Chem. C 2015, 119, 19573.
- 45J. Deng, Y. Li, Y. Xiao, K. Feng, C. Lu, K. Nie, X. Lv, H. Xu, J. Zhong, ACS Catal. 2022, 12, 7833.
- 46L. Huang, Y. Yuan, Y. Wang, M. Yılmaz, T. C. Zhang, S. Yuan, Chem. Eng. J. 2022, 448, 137607.
- 47B. Wan, Y. Yan, R. Huang, D. B. Abdala, F. Liu, Y. Tang, W. Tan, X. Feng, Sci. Total Environ. 2019, 650, 1980.
- 48B. D. McCloskey, A. Speide, R. Scheffler, D. C. Miller, V. Viswanathan, J. S. Hummelshøj, J. K. Nørskov, A. C. Luntz, J. Phys. Chem. Lett. 2012, 3, 997.
- 49M.-J. Choi, J.-H. Eom, S.-H. Shin, J. Nah, J.-S. Choi, H.-A. Song, H. An, H. Y. Kim, S. V. N. Pammi, G. Choi, J.-H. Choy, I. Swathi, V. Jella, B.-J. Park, J. Choi, S.-G. Yoon, Mater. Today Energy 2018, 10, 254.
- 50P. Yue, H. She, L. Zhang, B. Niu, R. Lian, J. Huang, L. Wang, Q. Wang, Appl. Catal., B 2021, 286, 119875.
- 51C. Li, M. Wei, D. G. Evans, X. Duan, Catal. Today 2015, 247, 163.
- 52C. Zhu, C. Li, M. Zheng, J.-J. Delaunay, ACS Appl. Mater. Interfaces 2015, 7, 22355.
- 53T.-T. Kong, J. Huang, X.-G. Jia, W.-Z. Wang, Y. Zhou, Z.-G. Zou, Appl. Catal., B 2020, 275, 119113.
- 54Y. Ling, G. Wang, J. Reddy, C. Wang, J. Z. Zhang, Y. Li, Angew. Chem., Int. Ed. 2012, 51, 4074.
- 55Z. Wang, X. Mao, P. Chen, M. Xiao, S. A. Monny, S. Wang, M. Konarova, A. Du, L. Wang, Angew. Chem., Int. Ed. 2019, 58, 1030.
- 56G. Liu, N. Li, Y. Zhao, M. Wang, R. Yao, F. Zhao, Y. Wu, J. Li, ACS Sustainable Chem. Eng. 2019, 7, 11377.
- 57Y. Xiao, X. Lv, K. Feng, C. Lu, H. Li, J. Zhong, J. Deng, J. Alloys Compd. 2022, 898, 162930.