Regulation of Interfacial Lattice Oxygen Activity by Full-Surface Modification Engineering towards Long Cycling Stability for Co-Free Li-Rich Mn-Based Cathode
Weibin Guo
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorYinggan Zhang
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorLiang Lin
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorYuanyuan Liu
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorMengjian Fan
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorGuiyang Gao
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorShihao Wang
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorBaisheng Sa
Multiscale Computational Materials Facility, College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350100 P. R. China
Search for more papers by this authorJie Lin
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorQing Luo
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorBaihua Qu
College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 P. R. China
Search for more papers by this authorLaisen Wang
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorJi Shi
School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, 152–8552 Japan
Search for more papers by this authorCorresponding Author
Qingshui Xie
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005 P. R. China
Shenzhen Research Institute of Xiamen University, Shenzhen, 518000 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Dong-Liang Peng
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorWeibin Guo
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorYinggan Zhang
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorLiang Lin
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorYuanyuan Liu
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorMengjian Fan
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorGuiyang Gao
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorShihao Wang
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorBaisheng Sa
Multiscale Computational Materials Facility, College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350100 P. R. China
Search for more papers by this authorJie Lin
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorQing Luo
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorBaihua Qu
College of Materials Science and Engineering, Chongqing University, Chongqing, 400044 P. R. China
Search for more papers by this authorLaisen Wang
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005 P. R. China
Search for more papers by this authorJi Shi
School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, 152–8552 Japan
Search for more papers by this authorCorresponding Author
Qingshui Xie
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005 P. R. China
Shenzhen Research Institute of Xiamen University, Shenzhen, 518000 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Dong-Liang Peng
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The construction of a protective layer for stabilizing anion redox reaction is the key to obtaining long cycling stability for Li-rich Mn-based cathode materials. However, the protection of the exposed surface/interface of the primary particles inside the secondary particles is usually ignored and difficult, let alone the investigation of the impact of the surface engineering of the internal primary particles on the cycling stability. In this work, an efficient method to regulate cycling stability is proposed by simply adjusting the distribution state of the boron nickel complexes coating layer. Theoretical calculation and experimental results display that the full-surface boron nickel complexes coating layer can not only passivate the activity of interface oxygen and improve its stability but also play the role of sharing voltage and protective layer to gradually activate the oxygen redox reaction during cycling. As a result, the elaborately designed cobalt-free Li-rich Mn-based cathode displays the highest discharge-specific capacity retentions of 91.1% after 400 cycles at 1 C and 94.3% even after 800 cycles at 5 C. In particular, the regulation strategy has well universality and is suitable for other high-capacity Li-rich cathode materials.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202300175-sup-0001-SuppMat.pdf4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) H. Hafiz, K. Suzuki, B. Barbiellini, N. Tsuji, N. Yabuuchi, K. Yamamoto, Y. Orikasa, Y. Uchimoto, Y. Sakurai, H. Sakurai, A. Bansil, V. Viswanathan, Nature 2021, 594, 213; b) B. Li, M. T. Sougrati, G. Rousse, A. V. Morozov, R. Dedryvere, A. Iadecola, A. Senyshyn, L. Zhang, A. M. Abakumov, M. L. Doublet, J. M. Tarascon, Nat. Chem. 2021, 13, 1070; c) K. McColl, R. A. House, G. J. Rees, A. G. Squires, S. W. Coles, P. G. Bruce, B. J. Morgan, M. S. Islam, Nat. Commun. 2022, 13, 5275; d) T. Liu, L. Yu, J. Liu, J. Lu, X. Bi, A. Dai, M. Li, M. Li, Z. Hu, L. Ma, D. Luo, J. Zheng, T. Wu, Y. Ren, J. Wen, F. Pan, K. Amine, Nat. Energy 2021, 6, 277; e) X. Zhu, F. Meng, Q. Zhang, L. Xue, H. Zhu, S. Lan, Q. Liu, J. Zhao, Y. Zhuang, Q. Guo, B. Liu, L. Gu, X. Lu, Y. Ren, H. Xia, Nat. Sustain. 2020, 4, 392; f) T. Wu, M. Jing, L. Yang, G. Zou, H. Hou, Y. Zhang, Y. Zhang, X. Cao, X. Ji, Adv. Energy Mater. 2019, 9, 1803478; g) W. Deng, T. Wu, Y. Wu, H. Zheng, G. Li, M. Yang, X. Zou, Y. Bai, Y. Yang, M. Jing, X. Wang, J. Mater. Chem. A 2022, 10, 20993.
- 2a) E. McCalla, A. M. Abakumov, M. Saubanere, D. Foix, E. J. Berg, G. Rousse, M. L. Doublet, D. Gonbeau, P. Novak, G. Van Tendeloo, R. Dominko, J. M. Tarascon, Science 2015, 350, 1516; b) D. Eum, B. Kim, S. J. Kim, H. Park, J. Wu, S. P. Cho, G. Yoon, M. H. Lee, S. K. Jung, W. Yang, W. M. Seong, K. Ku, O. Tamwattana, S. K. Park, I. Hwang, K. Kang, Nat. Mater. 2020, 19, 419; c) R. A. House, J.-J. Marie, M. A. Pérez-Osorio, G. J. Rees, E. Boivin, P. G. Bruce, Nat. Energy 2021, 6, 781; d) T. Liu, J. Liu, L. Li, L. Yu, J. Diao, T. Zhou, S. Li, A. Dai, W. Zhao, S. Xu, Y. Ren, L. Wang, T. Wu, R. Qi, Y. Xiao, J. Zheng, W. Cha, R. Harder, I. Robinson, J. Wen, J. Lu, F. Pan, K. Amine, Nature 2022, 606, 305; e) M. Zhang, D. A. Kitchaev, Z. Lebens-Higgins, J. Vinckeviciute, M. Zuba, P. J. Reeves, C. P. Grey, M. S. Whittingham, L. F. J. Piper, A. Van der Ven, Y. S. Meng, Nat. Rev. Mater. 2022, 7, 522.
- 3a) R. A. House, G. J. Rees, M. A. Pérez-Osorio, J.-J. Marie, E. Boivin, A. W. Robertson, A. Nag, M. Garcia-Fernandez, K.-J. Zhou, P. G. Bruce, Nat. Energy 2020, 5, 777; b) W. Guo, C. Zhang, Y. Zhang, L. Lin, W. He, Q. Xie, B. Sa, L. Wang, D. L. Peng, Adv. Mater. 2021, 33, 2103173.
- 4a) E. Hu, X. Yu, R. Lin, X. Bi, J. Lu, S. Bak, K.-W. Nam, H. L. Xin, C. Jaye, D. A. Fischer, K. Amine, X.-Q. Yang, Nat. Energy 2018, 3, 690; b) S. Sharifi-Asl, V. Yurkiv, A. Gutierrez, M. Cheng, M. Balasubramanian, F. Mashayek, J. Croy, R. Shahbazian-Yassar, Nano Lett. 2020, 20, 1208.
- 5Q. Li, D. W. Ning, K. An, Y. Tang, D. Zhou, G. Schuck, Z. Chen, N. Zhang, X. Liu, Nat. Commun. 2022, 13, 1123.
- 6a) Y. K. Sun, M. J. Lee, C. S. Yoon, J. Hassoun, K. Amine, B. Scrosati, Adv. Mater. 2012, 24, 1192; b) T. Zhao, L. Li, R. Chen, H. Wu, X. Zhang, S. Chen, M. Xie, F. Wu, J. Lu, K. Amine, Nano Energy 2015, 15, 164; c) B. Xiao, B. Wang, J. Liu, K. Kaliyappan, Q. Sun, Y. Liu, G. Dadheech, M. P. Balogh, L. Yang, T.-K. Sham, R. Li, M. Cai, X. Sun, Nano Energy 2017, 34, 120; d) S. Yang, P. Wang, H. Wei, L. Tang, X. Zhang, Z. He, Y. Li, H. Tong, J. Zheng, Nano Energy 2019, 63, 103889; e) M. Si, D. Wang, R. Zhao, D. Pan, C. Zhang, C. Yu, X. Lu, H. Zhao, Y. Bai, Adv. Sci. 2020, 7, 1902538; f) W. Zhang, Y. Sun, H. Deng, J. Ma, Y. Zeng, Z. Zhu, Z. Lv, H. Xia, X. Ge, S. Cao, Y. Xiao, S. Xi, Y. Du, A. Cao, X. Chen, Adv. Mater. 2020, 32, 2000496; g) Z. Zhu, R. Gao, I. Waluyo, Y. Dong, A. Hunt, J. Lee, J. Li, Adv. Energy Mater. 2020, 10, 2001120; h) J. Peng, Y. Li, Z. Chen, G. Liang, S. Hu, T. Zhou, F. Zheng, Q. Pan, H. Wang, Q. Li, J. Liu, Z. Guo, ACS Nano 2021, 15, 11607; i) J. Ahn, J. H. Kim, B. W. Cho, K. Y. Chung, S. Kim, J. W. Choi, S. H. Oh, Nano Lett. 2017, 17, 7869; j) J. Yang, P. Li, F. Zhong, X. Feng, W. Chen, X. Ai, H. Yang, D. Xia, Y. Cao, Adv. Energy Mater. 2020, 10, 1904264; k) Z. Xu, X. Guo, J. Wang, Y. Yuan, Q. Sun, R. Tian, H. Yang, J. Lu, Adv. Energy Mater. 2022, 12, 2201323; l) F.-D. Yu, L.-F. Que, C.-Y. Xu, M.-J. Wang, G. Sun, J.-G. Duh, Z.-B. Wang, Nano Energy 2019, 59, 527; m) X. Ding, D. Luo, J. Cui, H. Xie, Q. Ren, Z. Lin, Angew. Chem., Int. Ed. 2020, 59, 7778; n) D. Luo, X. Ding, J. Fan, Z. Zhang, P. Liu, X. Yang, J. Guo, S. Sun, Z. Lin, Angew. Chem., Int. Ed. 2020, 132, 23061; o) G. Sun, C. Zhao, F.-D. Yu, R. Yu, J. Wang, J. Zhou, G. Shao, X. Sun, Z.-B. Wang, Nano Energy 2021, 79, 105459.
- 7a) P. M. Csernica, S. S. Kalirai, W. E. Gent, K. Lim, Y.-S. Yu, Y. Liu, S.-J. Ahn, E. Kaeli, X. Xu, K. H. Stone, A. F. Marshall, R. Sinclair, D. A. Shapiro, M. F. Toney, W. C. Chueh, Nat. Energy 2021, 6, 642; b) X. Yu, Nat. Energy 2021, 6, 572.
- 8a) R. Boppella, C. H. Choi, J. Moon, D. H. Kim, Appl. Catal., B 2018, 239, 178; b) R. Boppella, J. Tan, W. Yang, J. Moon, Adv. Funct. Mater. 2018, 29, 1807976; c) Z. Xu, Q. Chen, Q. Chen, P. Wang, J. Wang, C. Guo, X. Qiu, X. Han, J. Hao, J. Mater. Chem. A 2022, 10, 24137.
- 9D. A. Hensley, S. H. Garofalini, Appl. Surf. Sci. 1994, 81, 331.
- 10M. M. Thackeray, S.-H. Kang, C. S. Johnson, J. T. Vaughey, R. Benedek, S. A. Hackney, J. Mater. Chem. 2007, 17, 3112.
- 11X. D. Zhang, J. L. Shi, J. Y. Liang, Y. X. Yin, J. N. Zhang, X. Q. Yu, Y. G. Guo, Adv. Mater. 2018, 30, 1801751.
- 12G. Assat, D. Foix, C. Delacourt, A. Iadecola, R. Dedryvere, J. M. Tarascon, Nat. Commun. 2017, 8, 2219.
- 13a) G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169; b) G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- 14J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 15G. Wang, L. Peng, K. Li, L. Zhu, J. Zhou, N. Miao, Z. Sun, Comput. Mater. Sci. 2021, 186, 110064.