High-Energy Aqueous Magnesium Ion Batteries with Capacity-Compensation Evolved from Dynamic Copper Ion Redox
Shuxin Zhang
School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorYaowei Wang
University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorYukun Sun
School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorYaru Wang
School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorYang Yang
School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorPeng Zhang
School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorXuecheng Lv
School of Energy and Power Engineering, Dalian University of Technology, Dalian, 116024 P. R. China
Search for more papers by this authorJiulin Wang
School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorHong Zhu
University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorCorresponding Author
Yanna NuLi
School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
E-mail: [email protected]
Search for more papers by this authorShuxin Zhang
School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorYaowei Wang
University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorYukun Sun
School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorYaru Wang
School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorYang Yang
School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorPeng Zhang
School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorXuecheng Lv
School of Energy and Power Engineering, Dalian University of Technology, Dalian, 116024 P. R. China
Search for more papers by this authorJiulin Wang
School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorHong Zhu
University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorCorresponding Author
Yanna NuLi
School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
The low specific capacity and low voltage plateau are significant challenges in the advancement of practical magnesium ion batteries (MIBs). Here, a superior aqueous electrolyte combining with a copper foam interlayer between anode and separator is proposed to address these drawbacks. Notably, with the dynamic redox of copper ions, the weakened solvation of Mg2+ cations in the electrolyte and the enhanced electronic conductivity of anode, which may offer effective capacity-compensation to the 3,4,9,10-perylenetetracarboxylic diimide (PTCDI)-Mg conversion reactions during the long-term cycles. As a result, the unique MIBs using expanded graphite cathode coupled with PTCDI anode demonstrate exceptional performance with an ultra-high capacity (205 mAh g−1, 243 Wh kg−1 at 5 A g−1) as well as excellent cycling stability after 600 cycles and rate capability (138 mAh g−1, 81 Wh kg−1 at 10 A g−1).
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202300148-sup-0001-SuppMat.pdf1.2 MB | Supporting Information |
smll202300148-sup-0002-SuppMat.zip10.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) N. Nitta, F. Wu, J. T. Lee, G. Yushin, Mater. Today 2015, 18, 252; b) J. M. Tarascon, M. Armand, Nature 2001, 414, 359.
- 2S. Yang, F. Zhang, H. Ding, P. He, H. Zhou, Joule 2018, 2, 1648.
- 3C. Xu, Q. Dai, L. Gaines, M. Hu, A. Tukker, B. Steubing, Commun. Mater. 2020, 1, 99.
- 4P. Sun, R. Bisschop, H. Niu, X. Huang, Fire Technol. 2020, 56, 1361.
- 5a) A. Ponrouch, J. Bitenc, R. Dominko, N. Lindahl, P. Johansson, M. R. Palacin, Energy Storage Mater. 2019, 20, 253; b) P. Canepa, G. Sai Gautam, D. C. Hannah, R. Malik, M. Liu, K. G. Gallagher, K. A. Persson, G. Ceder, Chem. Rev. 2017, 117, 4287; c) Y. Liang, H. Dong, D. Aurbach, Y. Yao, Nat. Energy 2020, 5, 646.
- 6a) L. Yin, B. J. Kwon, Y. Choi, C. J. Bartel, M. Yang, C. Liao, B. Key, G. Ceder, S. H. Lapidus, J. Am. Chem. Soc. 2021, 143, 10649; b) F. Xiong, Y. Jiang, L. Cheng, R. Yu, S. Tan, C. Tang, C. Zuo, Q. An, Y. Zhao, J.-J. Gaumet, L. Mai, Interdiscip. Mater. 2022, 1, 140.
- 7J. Li, C. Han, X. Ou, Y. Tang, Angew. Chem., Int. Ed. 2022, 61, e202116668.
- 8Y. Zhang, B. Zhang, J. Li, J. Liu, X. Huo, F. Kang, Chem. Eng. J. 2021, 403, 126377.
- 9D. Wu, W. Ren, Y. NuLi, J. Yang, J. Wang, J. Mater. Sci. Technol. 2021, 91, 168.
- 10a) Z. Zhao-Karger, R. Liu, W. Dai, Z. Li, T. Diemant, B. P. Vinayan, C. Bonatto Minella, X. Yu, A. Manthiram, R. J. Behm, M. Ruben, M. Fichtner, ACS Energy Lett. 2018, 3, 2005; b) J. Luo, S. He, T. L. Liu, ACS Energy Lett. 2017, 2, 1197; c) H. S. Kim, T. S. Arthur, G. D. Allred, J. Zajicek, J. G. Newman, A. E. Rodnyansky, A. G. Oliver, W. C. Boggess, J. Muldoon, Nat. Commun. 2011, 2, 427; d) O. Mizrahi, N. Amir, E. Pollak, O. Chusid, V. Marks, H. Gottlieb, L. Larush, E. Zinigrad, D. Aurbach, J. Electrochem. Soc. 2008, 155, A103; e) W. Ren, D. Wu, Y. N. NuLi, D. Zhang, Y. Yang, Y. Wang, J. Yang, J. L. Wang, ACS Energy Lett. 2021, 6, 3212; f) Y. Yang, Y. Qiu, Y. NuLi, W. Wang, J. Yang, J. Wang, J. Mater. Chem. A 2019, 7, 18295; g) W. Ren, D. Wu, Y. NuLi, X. Zhang, J. Yang, J. Wang, ACS Appl. Mater. Interfaces 2021, 13, 32957.
- 11a) P. Saha, M. K. Datta, O. I. Velikokhatnyi, A. Manivannan, D. Alman, P. N. Kumta, Prog. Mater. Sci. 2014, 66, 1; b) E. Levi, Y. Gofer, D. Aurbach, Chem. Mater. 2010, 22, 860.
- 12A. B. Ikhe, J. Y. Seo, W. B. Park, J.-W. Lee, K.-S. Sohn, M. Pyo, J. Power Sources 2021, 506, 230261.
- 13M. Wang, Y. Tang, Adv. Energy Mater. 2018, 8, 1703320.
- 14P. Seggem, S. N. Chavan, S. Biswas, V. R. Jetti, ACS Appl. Energy Mater. 2021, 4, 5165.
- 15R. Yang, F. Zhang, X. Lei, Y. Zheng, G. Zhao, Y. Tang, C.-S. Lee, ACS Appl. Mater. Interfaces 2020, 12, 47539.
- 16D. Lu, H. Liu, T. Huang, Z. Xu, L. Ma, P. Yang, P. Qiang, F. Zhang, D. Wu, J. Mater. Chem. A 2018, 6, 17297.
- 17a) Y. Zhang, P. Nie, C. Xu, G. Xu, B. Ding, H. Dou, X. Zhang, Electrochim. Acta 2018, 268, 512; b) M. Pasta, C. D. Wessells, R. A. Huggins, Y. Cui, Nat. Commun. 2012, 3, 1149; c) Y. Xu, Z. C. Liu, X. H. Zheng, K. Li, M. M. Wang, W. Yu, H. L. Hu, W. Chen, Adv. Energy Mater. 2022, 12, 2103352.
- 18a) J. Song, M. Noked, E. Gillette, J. Duay, G. Rubloff, S. B. Lee, Phys. Chem. Chem. Phys. 2015, 17, 5256; b) Y. Zhu, X. Guo, Y. Lei, W. Wang, A.-H. Emwas, Y. Yuan, Y. He, H. N. Alshareef, Energy Environ. Sci. 2022, 15, 1282; c) Y. Tang, X. Li, H. Lv, W. Wang, Q. Yang, C. Zhi, H. Li, Angew. Chem., Int. Ed. 2021, 60, 5443.
- 19a) S. Zhang, Y. Huang, Y. NuLi, B. Wang, J. Yang, J. Wang, J. Phys. Chem. C 2020, 124, 20712; b) S. Zhang, W. Ren, Y. NuLi, B. Wang, J. Yang, J. Wang, Chem. Eng. J. 2022, 427, 130902; c) L. Zeng, N. Wang, J. Yang, J. Wang, Y. NuLi, J. Electrochem. Soc. 2017, 164, A2504; d) A. B. Du, Y. M. Zhao, Z. H. Zhang, S. M. Dong, Z. L. Cui, K. Tang, C. L. Lu, P. X. Han, X. H. Zhou, G. L. Cui, Energy Storage Mater. 2020, 26, 23.
- 20a) P. He, H. O. Ford, L. C. Merrill, J. L. Schaefer, ACS Appl. Energy Mater. 2019, 2, 6800; b) A. Robba, M. Mežnar, A. Vizintin, J. Bitenc, J. Bobnar, I. Arčon, A. Randon-Vitanova, R. Dominko, J. Power Sources 2020, 450, 227672.
- 21M. Shimizu, A. Nakahigashi, S. Arai, Phys. Chem. Chem. Phys. 2021, 23, 16981.
- 22a) K. Beltrop, P. Meister, S. Klein, A. Heckmann, M. Grünebaum, H.-D. Wiemhöfer, M. Winter, T. Placke, Electrochim. Acta 2016, 209, 44; b) Z. Huang, Y. Hou, T. Wang, Y. Zhao, G. Liang, X. Li, Y. Guo, Q. Yang, Z. Chen, Q. Li, L. Ma, J. Fan, C. Zhi, Nat. Commun. 2021, 12, 3106.
- 23H. Li, T. Kurihara, D. Yang, M. Watanabe, T. Ishihara, Energy Storage Mater. 2021, 38, 454.
- 24Y. Zhu, J. Yin, A. H. Emwas, O. F. Mohammed, H. N. Alshareef, Adv. Funct. Mater. 2021, 31, 2107523.
- 25C. Rousse, S. Beaufils, P. Fricoteaux, Electrochim. Acta 2013, 107, 624.
- 26H. Takaba, W. Yamamoto, M. K. Alam, Bangladesh J. Phys. 2020, 27, 13.
10.3329/bjphy.v27i1.49723 Google Scholar
- 27B. Peng, T. Song, T. Wang, L. Chai, W. Yang, X. Li, C. Li, H. Wang, Chem. Eng. J. 2016, 299, 15.
- 28X. Lei, Y. Zheng, F. Zhang, Y. Wang, Y. Tang, Energy Storage Mater. 2020, 30, 34.
- 29F. Tavani, M. Fracchia, A. Tofoni, L. Braglia, A. Jouve, S. Morandi, M. Manzoli, P. Torelli, P. Ghigna, P. D'Angelo, Phys. Chem. Chem. Phys. 2021, 23, 26575.
- 30R. Wang, X. Li, X. Han, J. Lin, Y. Wang, T. Qian, H. Ding, Y. Shi, X. Liu, Chin. Phys. B 2021, 30, 046102.
- 31L. F. Wan, Y.-S. Liu, E. S. Cho, J. D. Forster, S. Jeong, H.-T. Wang, J. J. Urban, J. Guo, D. Prendergast, Nano Lett. 2017, 17, 5540.
- 32F. Frati, M. O. J. Y. Hunault, F. M. F. de Groot, Chem. Rev. 2020, 120, 4056.
- 33a) Z. Zhang, Y. Li, G. Zhao, L. Zhu, Y. Sun, F. Besenbacher, M. Yu, ACS Appl. Mater. Interfaces 2021, 13, 40451; b) B. Wen, C. Yang, J. Wu, J. Liu, W. Wang, J. Yang, X. Chi, Y. Liu, Chem. Eng. J. 2022, 435, 134997.
- 34P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
- 35J. Hafner, J. Comput. Chem. 2008, 29, 2044.
- 36J. P. Perdew, W. Yue, Phys. Rev. B 1986, 33, 8800.
- 37W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.