A Universal Room-Temperature 3D Printing Approach Towards porous MOF Based Dendrites Inhibition Hybrid Solid-State Electrolytes
Changgang Li
Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074 P. R. China
Search for more papers by this authorShuolei Deng
Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074 P. R. China
Search for more papers by this authorWenhao Feng
Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074 P. R. China
Search for more papers by this authorYaowen Cao
Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074 P. R. China
Search for more papers by this authorJiaxuan Bai
Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074 P. R. China
Search for more papers by this authorCorresponding Author
Xiaocong Tian
Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yifan Dong
State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Fan Xia
State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorChanggang Li
Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074 P. R. China
Search for more papers by this authorShuolei Deng
Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074 P. R. China
Search for more papers by this authorWenhao Feng
Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074 P. R. China
Search for more papers by this authorYaowen Cao
Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074 P. R. China
Search for more papers by this authorJiaxuan Bai
Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074 P. R. China
Search for more papers by this authorCorresponding Author
Xiaocong Tian
Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yifan Dong
State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Fan Xia
State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Hybrid solid-state electrolytes (HSSEs) provide new opportunities and inspiration for the realization of safer, higher energy-density metal batteries. The innovative application of 3‑dimensional printing in the electrochemical field, especially in solid-state electrolytes, endows energy storage devices with fascinating characteristics. In this paper, effective dendrite-inhibited PEO/MOFs HSSEs is innovatively developed through universal room-temperature 3‑dimensional printing (RT-3DP) strategy. The prepared HSSEs display enhanced dendrite inhibition due to the porous MOF filler promoting homogeneity of lithium deposition and the formation of C-OCO3Li, ROLi, LiF mesophases, which further improve the migration of Li+ in PEO chain and comprehensive performances. This universal strategy realizes the fabrication of different slurry components (PEO with ZIF-67, MOF-74, UIO-66, ZIF-8 fillers) HSSEs at RT environment, providing new inspirations for the exploration of next-generation advanced solid-state batteries.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202300066-sup-0001-SuppMat.pdf2.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Liu, L. Zhou, J. Han, K. Wen, S. Guan, C. Xue, Z. Zhang, B. Xu, Y. Lin, Y. Shen, L. Li, C.-W. Nan, Adv. Energy Mater. 2022, 12, 2200660.
- 2K. Pan, L. Zhang, W. Qian, X. Wu, K. Dong, H. Zhang, S. Zhang, Adv. Mater. 2020, 32, 2000399.
- 3R. Chen, Q. Li, X. Yu, L. Chen, H. Li, Chem. Rev. 2020, 120, 6820.
- 4F. Han, A. S. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D. N. Leonard, N. J. Dudney, H. Wang, C. Wang, Nat. Energy 2019, 4, 187.
- 5X. Chen, W. He, L. X. Ding, S. Wang, H. Wang, Energy Environ. Sci. 2019, 12, 938.
- 6C. Liu, J. Wang, W. Kou, Z. Yang, P. Zhai, Y. Liu, W. Wua, J. Wang, Chem. Eng. J. 2021, 404, 126517.
- 7C. Wang, D. Huang, S. Li, J. Yu, M. Zhu, N. Liu, Z. Lu, Nano Lett. 2020, 20, 7397.
- 8Y. Cui, J. Wan, Y. Ye, K. Liu, L. Y. Chou, Y. Cui, Nano Lett. 2020, 20, 1686.
- 9Z. Liu, X. Tian, M. Liu, S. Duan, Y. Ren, H. Ma, K. Tang, J. Shi, S. Hou, H. Jin, G. Cao, Small 2021, 17, 2002866.
- 10L. Xu, S. Tang, Y. Cheng, K. Wang, J. Liang, C. Liu, Y.-C. Cao, F. Wei, L. Mai, Joule 2018, 2, 1991.
- 11H.-D. Lim, J.-H. Park, H.-J. Shin, J. Jeong, J. T. Kim, K.-W. Nam, H.-G. Jung, K. Y. Chung, Energy Storage Mater. 2020, 25, 224.
- 12G. Zhang, J. Shu, L. Xu, X. Cai, W. Zou, L. Du, S. Hu, L. Mai, Nano-Micro Lett. 2021, 13, 105.
- 13C. Chen, J. Jiang, W. He, W. Lei, Q. Hao, X. Zhang, Adv. Funct. Mater. 2020, 30, 1909469.
- 14H. Ragones, A. Vinegrad, G. Ardel, M. Goor, Y. Kamir, M. M. Dorfman, A. Gladkikh, D. Golodnitsky, J. Electrochem. Soc. 2020, 167, 070503.
- 15Z. Lyu, G. J. H. Lim, J. J. Koh, Y. Li, Y. Ma, J. Ding, J. Wang, Z. Hu, J. Wang, W. Chen, Y. Chen, Joule 2021, 5, 89.
- 16X. Tian, 2D Mater. 2022, 9, 012001.
- 17M. Cheng, Y. Jiang, J. Mater. Res. 2021, 36, 4547.
- 18X. Tian, B. Xu, Small Methods 2021, 5, 2100877.
- 19A. J. Blake, R. R. Kohlmeyer, J. O. Hardin, E. A. Carmona, B. Maruyama, J. D. Berrigan, H. Huang, M. F. Durstock, Adv. Energy Mater. 2017, 7, 1602920.
- 20M. Cheng, Y. Jiang, W. Yao, Y. Yuan, R. Deivanayagam, T. Foroozan, Z. Huang, B. Song, R. Rojaee, T. Shokuhfar, Y. Pan, J. Lu, R. Shahbazian-Yassar, Adv. Mater. 2018, 30, 1800615.
- 21K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, L. Hu, Adv. Mater. 2016, 28, 2587.
- 22Z. Wang, Z. Wang, L. Yang, H. Wang, Y. Song, L. Han, K. Yang, J. Hu, H. Chen, F. Pan, Nano Energy 2018, 49, 580.
- 23L. Xin, D. Zhang, K. Qu, Y. Lu, Y. Wang, K. Huang, Z. Wang, W. Jin, Z. Xu, Adv. Funct. Mater. 2021, 31, 2104629.
- 24Z. Wang, J. Hu, L. Han, Z. Wang, H. Wang, Q. Zhao, J. Liu, F. Pan, Nano Energy 2019, 56, 92.
- 25L. Du, B. Zhang, W. Deng, Y. Cheng, L. Xu, L. Mai, Adv. Energy Mater. 2022, 12, 2200501.
- 26J. Qin, S. Wang, X. Wang, Appl. Catal. B 2017, 209, 476.
- 27H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, Y. Wang, J. Am. Chem. Soc. 2015, 137, 2688.
- 28W. Zha, F. Chen, D. Yang, Q. Shen, L. Zhang, J. Power Sources 2018, 397, 87.
- 29H. Huo, B. Wu, T. Zhang, X. Zheng, L. Ge, T. Xu, X. Guo, X. Sun, Energy Storage Mater. 2019, 18, 59.
- 30E. Zhao, Y. Guo, Y. Liu, S. Liu, G. Xu, Appl. Surf. Sci. 2022, 573, 151489.
- 31Z. Zhang, J.-H. You, S. J. Zhang, C.-W. Wang, Y. Zhou, J.-T. Li, L. Huang, S.-G. Sun, ChemElectroChem 2020, 7, 1125.
- 32K. Deng, J. Qin, S. Wang, S. Ren, D. Han, M. Xiao, Y. Meng, Small 2018, 14, 1801420.
- 33Z. Zhang, Y. Huang, H. Gao, J. Hang, C. Li, P. Liu, J. Membr. Sci. 2020, 598, 117800.
- 34J.-F. Wu, X. Guo, J. Mater. Chem. A 2019, 7, 2653.
- 35Z. Lei, J. Shen, W. Zhang, Q. Wang, J. Wang, Y. Deng, C. Wang, Nano Res. 2020, 13, 2259.
- 36T. Deng, L. Cao, X. He, A.-M. Li, D. Li, J. Xu, S. Liu, P. Bai, T. Jin, L. Ma, M. A. Schroeder, X. Fan, C. Wang, Chem 2021, 7, 3052.
- 37D. Ding, P. Gao, Q. Ma, D. Wang, F. Xia, Small 2019, 15, 1804878.
- 38J. Pan, F. Xia, Matter 2022, 5, 2526.