Scalable Fabrication of MXene-PVDF Nanocomposite Triboelectric Fibers via Thermal Drawing
Md Mehdi Hasan
UNAM − Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800 Turkey
Search for more papers by this authorMd Sazid Bin Sadeque
UNAM − Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800 Turkey
Search for more papers by this authorIlgın Albasar
UNAM − Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800 Turkey
Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, 06560 Turkey
Search for more papers by this authorHilal Pecenek
ERNAM − Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039 Turkey
Search for more papers by this authorFatma Kilic Dokan
Department of Chemistry and Chemical Processing Technologies, Mustafa Çıkrıkcıoglu Vocational School, Kayseri University, Kayseri, 38280 Turkey
Search for more papers by this authorM. Serdar Onses
UNAM − Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800 Turkey
ERNAM − Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039 Turkey
Department of Materials Science and Engineering, Faculty of Engineering, Erciyes University, Kayseri, 38039 Turkey
Search for more papers by this authorCorresponding Author
Mustafa Ordu
UNAM − Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800 Turkey
E-mail: [email protected]
Search for more papers by this authorMd Mehdi Hasan
UNAM − Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800 Turkey
Search for more papers by this authorMd Sazid Bin Sadeque
UNAM − Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800 Turkey
Search for more papers by this authorIlgın Albasar
UNAM − Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800 Turkey
Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, 06560 Turkey
Search for more papers by this authorHilal Pecenek
ERNAM − Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039 Turkey
Search for more papers by this authorFatma Kilic Dokan
Department of Chemistry and Chemical Processing Technologies, Mustafa Çıkrıkcıoglu Vocational School, Kayseri University, Kayseri, 38280 Turkey
Search for more papers by this authorM. Serdar Onses
UNAM − Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800 Turkey
ERNAM − Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039 Turkey
Department of Materials Science and Engineering, Faculty of Engineering, Erciyes University, Kayseri, 38039 Turkey
Search for more papers by this authorCorresponding Author
Mustafa Ordu
UNAM − Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800 Turkey
E-mail: [email protected]
Search for more papers by this authorAbstract
In the data-driven world, textile is a valuable resource for improving the quality of life through continuous monitoring of daily activities and physiological signals of humans. Triboelectric nanogenerators (TENG) are an attractive option for self-powered sensor development by coupling energy harvesting and sensing ability. In this study, to the best of the knowledge, scalable fabrication of Ti3C2Tx MXene-embedded polyvinylidene fluoride (PVDF) nanocomposite fiber using a thermal drawing process is presented for the first time. The output open circuit voltage and short circuit current show 53% and 58% improvement, respectively, compared to pristine PVDF fiber. The synergistic interaction between the surface termination groups of MXene and polar PVDF polymer enhances the performance of the fiber. The flexibility of the fiber enables the weaving of fabric TENG devices for large-area applications. The fabric TENG (3 × 2 cm2) demonstrates a power density of 40.8 mW m−2 at the matching load of 8 MΩ by maintaining a stable performance over 12 000 cycles. Moreover, the fabric TENG has shown the capability of energy harvesting by operating a digital clock and a calculator. A distributed self-powered sensor for human activities and walking pattern monitoring are demonstrated with the fabric.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202206107-sup-0001-SuppMat.pdf2.2 MB | Supporting Information |
smll202206107-sup-0002-VideoS1.mp473.1 MB | Supplemental Video 1 |
smll202206107-sup-0003-VideoS2.mp443.2 MB | Supplemental Video 2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Chen, J. Qi, S. Fan, Z. Qiao, J. C. Yeo, C. T. Lim, Adv. Healthcare Mater. 2021, 10, 2100116.
- 2S. D. Mamdiwar, R. Akshith, Z. Shakruwala, U. Chadha, K. Srinivasan, C.-Y. Chang, Biosensors 2021, 11, 372.
- 3P. Dwivedi, M. K. Singha, in The Impact of the COVID-19 Pandemic on Green Societies: Environmental Sustainability (Eds: C. Chakraborty, S. Roy, S. Sharma, T. A. Tran), Springer, New York 2021, pp. 305–321.
10.1007/978-3-030-66490-9_13 Google Scholar
- 4G. Loke, J. Alain, W. Yan, T. Khudiyev, G. Noel, R. Yuan, A. Missakian, Y. Fink, Matter 2020, 2, 786.
- 5M. Su, P. Li, X. Liu, D. Wei, J. Yang, Nanomaterials 2022, 12, 1495.
- 6J. Zhang, Y. Zhang, Y. Li, P. Wang, Polym. Rev. 2022, 62, 65.
- 7L. Avellar, G. Delgado, C. Marques, A. Frizera, A. Leal-Junior, E. Rocon, IEEE Sens. J. 2021, 21, 20078.
- 8R. Bagherzadeh, S. Abrishami, A. Shirali, A. R. Rajabzadeh, Mater. Today Sustainability 2022, 20, 100233.
10.1016/j.mtsust.2022.100233 Google Scholar
- 9W. Wang, A. Yu, J. Zhai, Z. L. Wang, Adv. Fiber Mater. 2021, 3, 394.
- 10C. Zhang, W. Fan, S. Wang, Q. Wang, Y. Zhang, K. Dong, ACS Appl. Electron. Mater. 2021, 3, 2449.
- 11Z. Soleimani, S. Zoras, B. Ceranic, Y. Cui, S. Shahzad, Nano Energy 2021, 89, 106325.
- 12L. Xu, M. A. M. Hasan, H. Wu, Y. Yang, Energies 2021, 14, 6219.
- 13X. Cui, H. Wu, R. Wang, J. Mater. Chem. A 2022, 10, 15881.
- 14A. Chen, C. Zhang, G. Zhu, Z. L. Wang, Adv. Sci. 2020, 7, 2000186.
- 15J. P. Lee, J. W. Lee, J. M. Baik, Micromachines 2018, 9, 532.
- 16X. Chen, X. Han, Q.-D. Shen, Adv. Electron. Mater. 2017, 3, 1600460.
- 17X. Du, Y. Liu, J. Wang, H. Niu, Z. Yuan, S. Zhao, X. Zhang, R. Cao, Y. Yin, N. Li, C. Zhang, Y. Xing, W. Xu, C. Li, ACS Appl. Mater. Interfaces 2018, 10, 25683.
- 18H. H. Singh, N. Khare, Energy 2019, 178, 765.
- 19Y. Song, J. Bao, Y. Hu, H. Cai, C. Xiong, Q. Yang, H. Tian, Z. Shi, Sustainable Energy Fuels 2022, 6, 2377.
- 20Z. Song, W. Li, H. Kong, Y. Bao, N. Wang, W. Wang, Y. Ma, Y. He, S. Gan, L. Niu, Nano Energy 2022, 92, 106759.
- 21H. Jiang, H. Lei, Z. Wen, J. Shi, D. Bao, C. Chen, J. Jiang, Q. Guan, X. Sun, S.-T. Lee, Nano Energy 2020, 75, 105011.
- 22B. V. Tawade, I. E. Apata, M. Singh, P. Das, N. Pradhan, A. M. Al-Enizi, A. Karim, D. Raghavan, Nanotechnology 2021, 32, 142004.
- 23J. Hu, S. Zhang, B. Tang, Energy Storage Mater. 2021, 37, 530.
- 24V. Kumar, P. Kumar, R. Deka, Z. Abbas, S. M. Mobin, Chem. Rec. 2022, 22, e202200067.
- 25M. Javadi, A. Heidari, S. Darbari, Curr. Appl. Phys. 2018, 18, 361.
- 26F. F. Hatta, M. A. S. M. Haniff, M. A. Mohamed, Int. J. Energy Res. 2022, 46, 544.
- 27M. M. Hasan, M. M. Hossain, H. K. Chowdhury, J. Mater. Chem. A 2021, 9, 3231.
- 28S. T. Mahmud, M. M. Hasan, S. Bain, S. T. Rahman, M. Rhaman, M. M. Hossain, M. Ordu, ACS Mater. Lett. 2022, 4, 1174.
- 29Y. Dong, S. S. K. Mallineni, K. Maleski, H. Behlow, V. N. Mochalin, A. M. Rao, Y. Gogotsi, R. Podila, Nano Energy 2018, 44, 103.
- 30M. T. Rahman, S. M. S. Rana, M. Salauddin, M. A. Zahed, S. Lee, E.-S. Yoon, J. Y. Park, Nano Energy 2022, 100, 107454.
- 31X. Chen, Y. Liu, Y. Sun, T. Zhao, C. Zhao, T. A. Khattab, E. G. Lim, X. Sun, Z. Wen, Nano Energy 2022, 98, 107236.
- 32X. Chen, Y. Zhao, F. Wang, D. Tong, L. Gao, D. Li, L. Wu, X. Mu, Y. Yang, Adv. Sci. 2022, 9, 2103957.
- 33C. Ma, M.-G. Ma, C. Si, X.-X. Ji, P. Wan, Adv. Funct. Mater. 2021, 31, 2009524.
- 34S. M. S. Rana, M. T. Rahman, M. Salauddin, S. Sharma, P. Maharjan, T. Bhatta, H. Cho, C. Park, J. Y. Park, ACS Appl. Mater. Interfaces 2021, 13, 4955.
- 35T. Bhatta, P. Maharjan, H. Cho, C. Park, S. H. Yoon, S. Sharma, M. Salauddin, M. T. Rahman, S. S. Rana, J. Y. Park, Nano Energy 2021, 81, 105670.
- 36H. Xu, J. Tao, Y. Liu, Y. Mo, R. Bao, C. Pan, Small 2022, 18, 2202477.
- 37C. Jiang, C. Wu, X. Li, Y. Yao, L. Lan, F. Zhao, Z. Ye, Y. Ying, J. Ping, Nano Energy 2019, 59, 268.
- 38X. Xu, S. Xie, Y. Zhang, H. Peng, Angew. Chem., Int. Ed. 2019, 58, 13643.
- 39W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X.-M. Tao, Adv. Mater. 2014, 26, 5310.
- 40K. Dong, X. Peng, Z. L. Wang, Adv. Mater. 2020, 32, 1902549.
- 41G. Loke, W. Yan, T. Khudiyev, G. Noel, Y. Fink, Adv. Mater. 2020, 32, 1904911.
- 42W. Yan, C. Dong, Y. Xiang, S. Jiang, A. Leber, G. Loke, W. Xu, C. Hou, S. Zhou, M. Chen, R. Hu, P. P. Shum, L. Wei, X. Jia, F. Sorin, X. Tao, G. Tao, Mater. Today 2020, 35, 168.
- 43L. van der Elst, C. F. de Lima, M. G. Kurtoglu, V. N. Koraganji, M. Zheng, A. Gumennik, Adv. Fiber Mater. 2021, 3, 59.
10.1007/s42765-020-00056-6 Google Scholar
- 44G. Loke, R. Yuan, M. Rein, T. Khudiyev, Y. Jain, J. Joannopoulos, Y. Fink, Nat. Commun. 2019, 10, 4010.
- 45M. Rein, V. D. Favrod, C. Hou, T. Khudiyev, A. Stolyarov, J. Cox, C.-C. Chung, C. Chhav, M. Ellis, J. Joannopoulos, Y. Fink, Nature 2018, 560, 214.
- 46G. Loke, T. Khudiyev, B. Wang, S. Fu, S. Payra, Y. Shaoul, J. Fung, I. Chatziveroglou, P.-W. Chou, I. Chinn, W. Yan, A. Gitelson-Kahn, J. Joannopoulos, Y. Fink, Nat. Commun. 2021, 12, 3317.
- 47T. Khudiyev, J. T. Lee, J. R. Cox, E. Argentieri, G. Loke, R. Yuan, G. H. Noel, R. Tatara, Y. Yu, F. Logan, J. Joannopoulos, Y. Shao-Horn, Y. Fink, Adv. Mater. 2020, 32, 2004971.
- 48T. Khudiyev, B. Grena, G. Loke, C. Hou, H. Jang, J. Lee, G. H. Noel, J. Alain, J. Joannopoulos, K. Xu, J. Li, Y. Fink, J. T. Lee, Mater. Today 2022, 52, 80.
- 49A. Leber, C. Dong, R. Chandran, T. D. Gupta, N. Bartolomei, F. Sorin, Nat. Electron. 2020, 3, 316.
- 50M. Chen, Z. Wang, Q. Zhang, Z. Wang, W. Liu, M. Chen, L. Wei, Nat. Commun. 2021, 12, 1416.
- 51T. Zhang, K. Li, J. Zhang, M. Chen, Z. Wang, S. Ma, N. Zhang, L. Wei, Nano Energy 2017, 41, 35.
- 52X. Lu, H. Qu, M. Skorobogatiy, ACS Nano 2017, 11, 2103.
- 53W. Yan, G. Noel, G. Loke, E. Meiklejohn, T. Khudiyev, J. Marion, G. Rui, J. Lin, J. Cherston, A. Sahasrabudhe, J. Wilbert, I. Wicaksono, R. W. Hoyt, A. Missakian, L. Zhu, C. Ma, J. Joannopoulos, Y. Fink, Nature 2022, 603, 616.
- 54Y. Guo, S. Jiang, B. J. B. Grena, I. F. Kimbrough, E. G. Thompson, Y. Fink, H. Sontheimer, T. Yoshinobu, X. Jia, ACS Nano 2017, 11, 6574.
- 55Y. Zhang, X. Li, J. Kim, Y. Tong, E. G. Thompson, S. Jiang, Z. Feng, L. Yu, J. Wang, D. S. Ha, H. Sontheimer, B. N. Johnson, X. Jia, Adv. Opt. Mater. 2021, 9, 2001815.
- 56Z. Feng, S. Yang, S. Jia, Y. Zhang, S. Jiang, L. Yu, R. Li, G. Song, A. Wang, T. Martin, L. Zuo, X. Jia, Nano Energy 2020, 74, 104805.
- 57C. Dong, A. Leber, T. D. Gupta, R. Chandran, M. Volpi, Y. Qu, T. Nguyen-Dang, N. Bartolomei, W. Yan, F. Sorin, Nat. Commun. 2020, 11, 3537.
- 58Z. Wang, T. Wu, Z. Wang, T. Zhang, M. Chen, J. Zhang, L. Liu, M. Qi, Q. Zhang, J. Yang, W. Liu, H. Chen, Y. Luo, L. Wei, Nat. Commun. 2020, 11, 3842.
- 59J. Zhang, S. Li, S. Hu, Y. Zhou, Materials 2018, 11, 1979.
- 60F. Liu, A. Zhou, J. Chen, J. Jia, W. Zhou, L. Wang, Q. Hu, Appl. Surf. Sci. 2017, 416, 781.
- 61Y. Qu, T. Nguyen-Dang, A. G. Page, W. Yan, T. D. Gupta, G. M. Rotaru, R. M. Rossi, V. D. Favrod, N. Bartolomei, F. Sorin, Adv. Mater. 2018, 30, 1707251.
- 62W. Wu, W. Zhao, Q. Sun, B. Yu, X. Yin, X. Cao, Y. Feng, R. K. Y. Li, J. Qu, Compos. Commun. 2021, 23, 100562.
- 63M. Shekhirev, C. E. Shuck, A. Sarycheva, Y. Gogotsi, Prog. Mater. Sci. 2021, 120, 100757.
- 64W. Li, Z. Song, J. Zhong, J. Qian, Z. Tan, X. Wu, H. Chu, W. Nie, X. Ran, J. Mater. Chem. C 2019, 7, 10371.
- 65V. Natu, M. Benchakar, C. Canaff, A. Habrioux, S. Célérier, M. W. Barsoum, Matter 2021, 4, 1224.
- 66M. Benchakar, L. Loupias, C. Garnero, T. Bilyk, C. Morais, C. Canaff, N. Guignard, S. Morisset, H. Pazniak, S. Hurand, P. Chartier, J. Pacaud, V. Mauchamp, M. W. Barsoum, A. Habrioux, S. Célérier, Appl. Surf. Sci. 2020, 530, 147209.
- 67Z. Yin, B. Tian, Q. Zhu, C. Duan, Polymers 2019, 11, 2033.
- 68V. Tiwari, G. Srivastava, J. Polym. Res. 2014, 21, 587.
- 69X. Cai, T. Lei, D. Sun, L. Lin, RSC Adv. 2017, 7, 15382.
- 70R. Gregorio Jr., M. Cestari, J. Polym. Sci., Part B: Polym. Phys. 1994, 32, 859.
- 71P. Martins, A. C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 2014, 39, 683.
- 72N. Maity, A. Mandal, A. K. Nandi, Polymer 2016, 103, 83.
- 73S. Ippili, V. Jella, A. M. Thomas, C. Yoon, J.-S. Jung, S.-G. Yoon, J. Mater. Chem. A 2021, 9, 15993.
- 74K. Rajavel, S. Luo, Y. Wan, X. Yu, Y. Hu, P. Zhu, R. Sun, C. Wong, Composites, Part A 2020, 129, 105693.
- 75J. Luo, Z. L. Wang, EcoMat 2020, 2, e12059.
- 76G. Zhu, B. Peng, J. Chen, Q. Jing, Z. L. Wang, Nano Energy 2015, 14, 126.
- 77M. Kanik, M. G. Say, B. Daglar, A. F. Yavuz, M. H. Dolas, M. M. El-Ashry, M. Bayindir, Adv. Mater. 2015, 27, 2367.
- 78S. M. S. Rana, M. A. Zahed, M. T. Rahman, M. Salauddin, S. H. Lee, C. Park, P. Maharjan, T. Bhatta, K. Shrestha, J. Y. Park, Adv. Funct. Mater. 2021, 31, 2105110.
- 79K. Shrestha, S. Sharma, G. B. Pradhan, T. Bhatta, P. Maharjan, S. S. Rana, S. Lee, S. Seonu, Y. Shin, J. Y. Park, Adv. Funct. Mater. 2022, 32, 2113005.
- 80V. Harnchana, H. V. Ngoc, W. He, A. Rasheed, H. Park, V. Amornkitbamrung, D. J. Kang, ACS Appl. Mater. Interfaces 2018, 10, 25263.
- 81S. Tu, Q. Jiang, X. Zhang, H. N. Alshareef, ACS Nano 2018, 12, 3369.
- 82S. Wang, H.-Q. Shao, Y. Liu, C.-Y. Tang, X. Zhao, K. Ke, R.-Y. Bao, M.-B. Yang, W. Yang, Compos. Sci. Technol. 2021, 202, 108600.
- 83N. A. Shepelin, P. C. Sherrell, E. N. Skountzos, E. Goudeli, J. Zhang, V. C. Lussini, B. Imtiaz, K. A. S. Usman, G. W. Dicinoski, J. G. Shapter, J. M. Razal, A. V. Ellis, Nat. Commun. 2021, 12, 3171.
- 84Y. Feng, Q. Deng, C. Peng, J. Hu, Y. Li, Q. Wu, Z. Xu, J. Mater. Chem. C 2018, 6, 13283.
- 85S. Jang, H. Kim, Y. Kim, B. J. Kang, J. H. Oh, Appl. Phys. Lett. 2016, 108, 143901.
- 86Y.-W. Cai, X.-N. Zhang, G.-G. Wang, G.-Z. Li, D.-Q. Zhao, N. Sun, F. Li, H.-Y. Zhang, J.-C. Han, Y. Yang, Nano Energy 2021, 81, 105663.
- 87Y. Tian, Y. An, B. Xu, Nano Energy 2022, 101, 107556.
- 88S. Sriphan, N. Vittayakorn, Smart Mater. Struct. 2018, 27, 105026.
- 89N. Gogurla, B. Roy, J.-Y. Park, S. Kim, Nano Energy 2019, 62, 674.
- 90L. Li, X. Fu, S. Chen, S. Uzun, A. S. Levitt, C. E. Shuck, W. Han, Y. Gogotsi, ACS Appl. Mater. Interfaces 2020, 12, 15362.
- 91T. Jing, B. Xu, J. H. Xin, X. Guan, Y. Yang, J. Mater. Chem. A 2021, 9, 12331.
- 92J. S. Marion, N. Gupta, H. Cheung, K. Monir, P. Anikeeva, Y. Fink, Adv. Mater. 2022, 34, 2201081.
- 93L. Wang, H. Xu, F. Huang, X. Tao, Y. Ouyang, Y. Zhou, X. Mo, Nanomaterials 2022, 12, 3217.
- 94X. Guo, T. He, Z. Zhang, A. Luo, F. Wang, E. J. Ng, Y. Zhu, H. Liu, C. Lee, ACS Nano 2021, 15, 19054.
- 95J. Yu, X. Hou, M. Cui, S. Zhang, J. He, W. Geng, J. Mu, X. Chou, Nano Energy 2019, 64, 103923.