SMART Silly Putty: Stretchable, Malleable, Adherable, Reusable, and Tear-Resistible Hydrogels
Mingtao Chen
Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104 USA
Search for more papers by this authorBrendan B. Murphy
Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, University of Pennsylvania, 3400 Spruce St Ste 3 W, Philadelphia, PA, 19104 USA
Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104 USA
Search for more papers by this authorYuchen Wang
Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104 USA
Search for more papers by this authorFlavia Vitale
Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, University of Pennsylvania, 3400 Spruce St Ste 3 W, Philadelphia, PA, 19104 USA
Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104 USA
Search for more papers by this authorCorresponding Author
Shu Yang
Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104 USA
E-mail: [email protected]
Search for more papers by this authorMingtao Chen
Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104 USA
Search for more papers by this authorBrendan B. Murphy
Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, University of Pennsylvania, 3400 Spruce St Ste 3 W, Philadelphia, PA, 19104 USA
Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104 USA
Search for more papers by this authorYuchen Wang
Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104 USA
Search for more papers by this authorFlavia Vitale
Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, University of Pennsylvania, 3400 Spruce St Ste 3 W, Philadelphia, PA, 19104 USA
Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104 USA
Search for more papers by this authorCorresponding Author
Shu Yang
Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104 USA
E-mail: [email protected]
Search for more papers by this authorAbstract
Cell engineering, soft robotics, and wearable electronics often desire soft materials that are easy to deform, self-heal readily, and can relax stress rapidly. Hydrogels, a type of hydrophilic networks, are such kind of materials that can be made responsive to environmental stimuli. However, conventional hydrogels often suffer from poor stretchability and repairability. Here, hydrogels consisting of boronic ester dynamic covalent bonds in a double network of poly(vinyl alcohol)/boric acid and chitosan are synthesized, which demonstrate extreme stretchability (up to 310 times the original length), instant self-healing (within 5 s), and reusability and inherent adhesion. Their instant stress relaxation stems from a low activation energy of the boronic ester bond exchange (≤20 kJ mol−1) and contributes to the extreme stretchability and self-healing behaviors. Various water-dispersible additives can be readily incorporated in the hydrogels via hand kneading for potential applications such as soft electronics, bio-signal sensing, and soft artificial joints.
Conflict of Interest
The lead authors have submitted a provisional patent filing.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smll202205854-sup-0001-SuppMat.pdf3.3 MB | Supporting Information |
smll202205854-sup-0002-VideoS1.mp411.9 MB | Supplemental Video 1 |
smll202205854-sup-0003-VideoS2.mp415.7 MB | Supplemental Video 2 |
smll202205854-sup-0004-VideoS3.mp49.7 MB | Supplemental Video 3 |
smll202205854-sup-0005-VideoS4.mp424.6 MB | Supplemental Video 4 |
smll202205854-sup-0006-VideoS5.mp411.4 MB | Supplemental Video 5 |
smll202205854-sup-0007-VideoS6.mp430.5 MB | Supplemental Video 6 |
smll202205854-sup-0008-VideoS7.mp46.2 MB | Supplemental Video 7 |
smll202205854-sup-0009-VideoS8.mp410.7 MB | Supplemental Video 8 |
smll202205854-sup-0010-VideoS9.mp410.8 MB | Supplemental Video 9 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) G. Theocharidis, H. Yuk, H. Roh, L. Wang, I. Mezghani, J. Wu, A. Kafanas, M. Contreras, B. Sumpio, Z. Li, E. Wang, L. Chen, C. F. Guo, N. Jayaswal, X.-L. Katopodi, N. Kalavros, C. S. Nabzdyk, I. S. Vlachos, A. Veves, X. Zhao, Nat. Biomed. Eng. 2022, 6, 1118; b) J. A. C. Cruz, B. R. Freedman, M. Lee, C. Johnson, H. Ijaz, D. J. Mooney, Adv. Mater. 2022, 34, 2205567; c) D. Rus, M. T. Tolley, Nature 2015, 521, 467; d) C. Laschi, B. Mazzolai, M. Cianchetti, Sci. Robot. 2016, 1, eaah3690.
- 2M. Röttger, T. Domenech, R. v. d. Weegen, A. Breuillac, R. Nicolaÿ, L. Leibler, Science 2017, 356, 62.
- 3H. Yuk, J. Wu, T. L. Sarrafian, X. Mao, C. E. Varela, E. T. Roche, L. G. Griffiths, C. S. Nabzdyk, X. Zhao, Nat. Biomed. Eng. 2021, 5, 1131.
- 4J.-Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, Z. Suo, Nature 2012, 489, 133.
- 5J. Kim, G. Zhang, M. Shi, Z. Suo, Science 2021, 374, 212.
- 6Z. Li, Z. Hou, H. Fan, H. Li, Adv. Funct. Mater. 2017, 27, 1604379.
- 7a) Q. Chen, L. Zhu, H. Chen, H. Yan, L. Huang, J. Yang, J. Zheng, Adv. Funct. Mater. 2015, 25, 1598; b) A. B. South, L. A. Lyon, Angew. Chem., Int. Ed. 2010, 49, 767; c) M. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, Nat. Commun. 2011, 2, 511.
- 8P. Chakma, D. Konkolewicz, Angew. Chem., Int. Ed. 2019, 58, 9682.
- 9Y. Yang, Z. Pei, Z. Li, Y. Wei, Y. Ji, J. Am. Chem. Soc. 2016, 138, 2118.
- 10Y. Lai, X. Kuang, P. Zhu, M. Huang, X. Dong, D. Wang, Adv. Mater. 2018, 30, 1802556.
- 11M. Kathan, P. Kovaříček, C. Jurissek, A. Senf, A. Dallmann, A. F. Thünemann, S. Hecht, Angew. Chem., Int. Ed. 2016, 55, 13882.
- 12M. D. Konieczynska, J. C. Villa-Camacho, C. Ghobril, M. Perez-Viloria, K. M. Tevis, W. A. Blessing, A. Nazarian, E. K. Rodriguez, M. W. Grinstaff, Angew. Chem., Int. Ed. 2016, 55, 9984.
- 13W. L. A. Brooks, B. S. Sumerlin, Chem. Rev. 2016, 116, 1375.
- 14P. Zheng, T. J. McCarthy, J. Am. Chem. Soc. 2012, 134, 2024.
- 15a) J. J. Cash, T. Kubo, A. P. Bapat, B. S. Sumerlin, Macromolecules 2015, 48, 2098; b) O. R. Cromwell, J. Chung, Z. Guan, J. Am. Chem. Soc. 2015, 137, 6492; c) L. He, D. E. Fullenkamp, J. G. Rivera, P. B. Messersmith, Chem. Commun. 2011, 47, 7497; d) J.-C. Lai, J.-F. Mei, X.-Y. Jia, C.-H. Li, X.-Z. You, Z. Bao, Adv. Mater. 2016, 28, 8277; e) W. A. Ogden, Z. Guan, J. Am. Chem. Soc. 2018, 140, 6217; f) Z.-H. Zhao, D.-P. Wang, J.-L. Zuo, C.-H. Li, ACS Mater. Lett. 2021, 3, 1328.
- 16W.-P. Chen, D.-Z. Hao, W.-J. Hao, X.-L. Guo, L. Jiang, ACS Appl. Mater. Interfaces 2018, 10, 1258.
- 17G. Nian, J. Kim, X. Bao, Z. Suo, Adv. Mater. 2022, 34, 2206577.
- 18J. P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Adv. Mater. 2003, 15, 1155.
- 19M. Chen, Y. Wu, B. Chen, A. M. Tucker, A. Jagota, S. Yang, Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2203074119.
- 20P. Dydo, M. Turek, in Boron Separation Processes (Eds: N. Kabay, M. Bryjak, N. Hilal), Elsevier, Amsterdam 2015.
- 21a) J. Schott, J. Kretzschmar, M. Acker, S. Eidner, M. U. Kumke, B. Drobot, A. Barkleit, S. Taut, V. Brendler, T. Stumpf, Dalton Trans. 2014, 43, 11516; b) Y. Wang, A. Pitto-Barry, A. Habtemariam, I. Romero-Canelon, P. J. Sadler, N. P. E. Barry, Inorg. Chem. Front. 2016, 3, 1058.
- 22a) S. Kumar, F. Ye, S. Dobretsov, J. Dutta, Appl. Sci. 2019, 9, 2409; b) I. l. Roux, H. M. Krieg, C. A. Yeates, J. C. Breytenbach, J. Membr. Sci. 2005, 248, 127.
- 23X. Liu, J. C. Kim, A. L. Miller, B. E. Waletzki, L. Lu, New J. Chem. 2018, 42, 17671.
- 24a) J. Park, J. H. Choi, S. Kim, I. Jang, S. Jeong, J. Y. Lee, Acta Biomater. 2019, 97, 141; b) X. Zhou, A. Rajeev, A. Subramanian, Y. Li, N. Rossetti, G. Natale, G. A. Lodygensky, F. Cicoira, Acta Biomater. 2022, 139, 296.
- 25a) Z. Du, F. Liu, C. Xiao, Y. Dan, L. Jiang, J. Mater. Sci. 2021, 56, 913;
b) A. Melo, D. Borges, N. Debacher, e-Polymers 2007, 7, 141.
10.1515/epoly.2007.7.1.1650 Google Scholar
- 26S. M. A. Mokhtar, E. Alvarez de Eulate, M. Yamada, T. W. Prow, D. R. Evans, Med. Devices Sens. 2021, 4, e10160.
10.1002/mds3.10160 Google Scholar
- 27a) F. Ershad, A. Thukral, J. Yue, P. Comeaux, Y. Lu, H. Shim, K. Sim, N.-I. Kim, Z. Rao, R. Guevara, L. Contreras, F. Pan, Y. Zhang, Y.-S. Guan, P. Yang, X. Wang, P. Wang, X. Wu, C. Yu, Nat. Commun. 2020, 11, 3823; b) J. R. Sempionatto, M. Lin, L. Yin, E. De la Paz, K. Pei, T. Sonsa-Ard, A. N. de Loyola Silva, A. A. Khorshed, F. Zhang, N. Tostado, S. Xu, J. Wang, Nat. Biomed. Eng. 2021, 5, 737.