En Route to High-Density Chiral Single-walled Carbon Nanotube Arrays using Solid Trojan Catalysts
Dayan Liu
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000 P. R. China
Search for more papers by this authorKai Xiang
Beijing Key Laboratory of Research and Application for Aerospace Green Propellants, Beijing Institute of Aerospace Testing Technology, Beijing, 100074 P. R. China
Search for more papers by this authorCorresponding Author
Shuchen Zhang
Center for Nanochemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorYing Wang
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000 P. R. China
Search for more papers by this authorHongjie Zhang
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000 P. R. China
Search for more papers by this authorTaibin Wang
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000 P. R. China
Search for more papers by this authorFeng Yang
Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055 P. R. China
Search for more papers by this authorRan Du
School of Materials Science & Engineering, Key Laboratory of High Energy Density Materials of the Ministry of Education, Center for Intelligent Health Materials & Devices, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorJinjie Qian
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000 P. R. China
Search for more papers by this authorZhi Yang
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000 P. R. China
Search for more papers by this authorCorresponding Author
Yue Hu
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shaoming Huang
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000 P. R. China
School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou, 510006 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorDayan Liu
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000 P. R. China
Search for more papers by this authorKai Xiang
Beijing Key Laboratory of Research and Application for Aerospace Green Propellants, Beijing Institute of Aerospace Testing Technology, Beijing, 100074 P. R. China
Search for more papers by this authorCorresponding Author
Shuchen Zhang
Center for Nanochemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorYing Wang
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000 P. R. China
Search for more papers by this authorHongjie Zhang
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000 P. R. China
Search for more papers by this authorTaibin Wang
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000 P. R. China
Search for more papers by this authorFeng Yang
Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055 P. R. China
Search for more papers by this authorRan Du
School of Materials Science & Engineering, Key Laboratory of High Energy Density Materials of the Ministry of Education, Center for Intelligent Health Materials & Devices, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorJinjie Qian
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000 P. R. China
Search for more papers by this authorZhi Yang
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000 P. R. China
Search for more papers by this authorCorresponding Author
Yue Hu
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Shaoming Huang
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000 P. R. China
School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou, 510006 P. R. China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Solid catalyst is widely recognized as an effective strategy to control the chirality of single-walled carbon nanotubes (SWNTs). However, it is still not compatible with high density in horizontal arrays. “Trojan” catalysts strategy is one of the most effective methods to realize SWNTs with high density and has great potential in chirality control. Here, the co-realization of high density and chirality controlling for SWNTs in a low-temperature growth process is reported based on the developed solid “Trojan” catalyst. High temperature “Trojan” catalyst formation process provides sufficient catalyst number to acquire high density. These liquid “Trojan” catalysts are cooled to solid state by adopting low growth temperature (540 °C), which can be good template to realize the chirality controlling of SWNTs with exposing six-fold symmetry face, (111). Finally, (9, 6) and (13, 1) SWNTs enriched horizontal array with the purity of ≈90% and density of 4 tubes µm−1 is realized. The comparison between the distribution of initial catalysts and the density of as-grown tubes indicates no sacrificing on catalysts number to improve chirality selectivity. This work opens a new avenue on the catalyst's design and chirality controlling in SWNTs growth.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202205540-sup-0001-SuppMat.pdf1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) C. Wang, K. M. Ryu, L. G. D. Arco, A. Badmaev, J. L. Zhang, X. Lin, Y. C. Che, C. W. Zhou, Nano Res. 2010, 3, 831; b) L. Ding, D. N. Yuan, J. Liu, J. Am. Chem. Soc. 2008, 130, 5428; c) S. C. Zhang, L. M. Tong, Y. Hu, L. X. Kang, J. Zhang, J. Am. Chem. Soc. 2015, 137, 8904.
- 2W. M. Liu, S. C. Zhang, L. Qian, D. W. Lin, J. Zhang, Carbon 2020, 157, 164.
- 3a) M. S. He, X. J. Duan, X. Wang, J. Zhang, Z. F. Liu, C. Robinson, J. Phys. Chem. B 2004, 108, 12665; b) R. F. Zhang, Y. Y. Zhang, Q. Zhang, H. H. Xie, W. Z. Qian, F. We, ACS Nano 2013, 7, 6156.
- 4a) B. L. Liu, F. Q. Wu, H. Gui, M. Zheng, C. W. Zhou, Nat. Commun. 2012, 3, 887; b) F. Yang, X. Wang, D. Q. Zhang, J. Yang, D. Luo, Z. W. Xu, J. K. Wei, J. Q. Wang, Z. Xu, F. Peng, X. M. Li, R. M. Li, Y. L. Li, M. H. Li, X. D. Bai, F. Ding, Y. Li, Nature 2014, 510, 522; c) S. C. Zhang, L. X. Kang, X. Wang, L. M. Tong, L. W. Yang, Z. Q. Wang, K. Qi, S. B. Deng, Q. W. Li, X. D. Bai, F. Ding, J. Zhang, Nature 2017, 543, 234; d) L. X. Kang, S. B. Deng, S. C. Zhang, Q. W. Li, J. Zhang, J. Am. Chem. Soc. 2016, 138, 12723.
- 5Y. Hu, L. X. Kang, Q. C. Zhao, H. Zhong, S. C. Zhang, L. W. Yang, Z. Q. Wang, J. J. Lin, Q. W. Li, Z. Y. Zhang, L. M. Peng, Z. F. Liu, J. Zhang, Nat. Commun. 2015, 6, 6099.
- 6a) R. F. Zhang, Y. Y. Zhang, Q. Zhang, H. H. Xie, W. Z. Qian, F. Wei, ACS Nano 2013, 7, 6156; b) B. W. Xin, W. K. Gao, Z. H. Ji, S. C. Zhang, L. T. Xin, L. F. Zhao, H. Xue, Q. R. Wu, L. L. Zhang, C. Liu, J. Zhang, M. S. He, Carbon 2020, 156, 410.
- 7S. C. Zhang, D. W. Lin, W. M. Liu, Y. Hu, J. Zhang, Small 2019, 15, 1903896.
- 8S. C. Zhang, L. M. Tong, J. Zhang, Nat. Sci. Rev. 2018, 5, 310.
- 9a) L. X. Kang, S. C. Zhang, Q. W. Li, J. Zhang, J. Am. Chem. Soc. 2016, 138, 6727; b) L. X. Kang, Y. Hu, H. Zhong, J. Si, S. C. Zhang, Q. C. Zhao, J. J. Lin, Q. W. Li, Z. Y. Zhang, L. M. Peng, J. Zhang, Nano Res. 2015, 8, 3694.
- 10a) V. I. Artyukhov, E. S. Penev, B. I. Yakobson, Nat. Commun. 2014, 5, 4892; b) M. S. He, X. Wang, S. C. Zhang, H. Jiang, F. Cavalca, H. Z. Cui, J. B. Wagner, T. W. Hansen, E. Kauppinen, J. Zhang, F. Ding, Sci. Adv. 2019, 5, 9668; c) S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, R. B. Weisman, J. Am. Chem. Soc. 2003, 125, 11186; d) M. S. He, H. Jiang, B. L. Liu, P. V. Fedotov, A. I. Chernov, E. D. Obraztsova, F. Cavalca, J. B. Wagner, T. W. Hansen, I. V. Anoshkin, E. A. Obraztsova, A. V. Belkin, E. Sairanen, A. G. Nasibulin, J. Lehtonen, E. I. Kauppinen, Sci. Rep. 2013, 3, 1460.
- 11A. Jorio, R. Saito, J. H. Hafaer, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. Lett. 2001, 86, 1118.
- 12a) M. S. Dresselhausa, G. Dresselhausb, R. Saitoc, A. Jorio, Phys. Rep. 2005, 409, 47; b) H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synth. Met. 1999, 103, 2555; c) D. Q. Zhang, J. Yang, F. Yang, R. M. Li, M. H. Li, D. Ji, Y. Li, Nanoscale 2015, 7, 10719.
- 13M. S. He, Y. Magnin, H. Amara, H. Jiang, H. Z. Cui, F. Fossard, A. Castan, E. Kauppinen, A. Loiseau, C. Bichara, Carbon 2017, 113, 231.
- 14a) A. R. Harutyunyan, G. G. Chen, T. M. Paronyan, E. M. Pigos, O. A. Kuznetsov, K. Hewaparakrama, S. M. Kim, D. Zakharov, E. A. Stach, G. U. Sumanasekera, Science 2009, 326, 116; b) S. C. Zhang, X. Wang, F. R. Yao, M. S. He, D. W. Lin, H. Ma, Y. Y. Sun, Q. C. Zhao, K. H. Liu, F. Ding, J. Zhang, Chem 2019, 5, 1182; c) Y. Magnin, H. Amar, F. Ducastelle, A. Loiseau, C. Bichara, Science 2018, 362, 212; d) F. Ding, A. R. Harutyunyan, B. I. Yakobson, Proc. Natl. Acad. Sci. USA 2009, 106, 2506.