Hydrogen Storage in Partially Exfoliated Magnesium Diboride Multilayers
Harini Gunda
Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550 USA
Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355 India
Search for more papers by this authorKeith G. Ray
Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorLeonard E. Klebanoff
Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorChaochao Dun
Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
Search for more papers by this authorMaxwell A. T. Marple
Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorSichi Li
Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorPeter Sharma
Sandia National Laboratories, 1515 Eubank SE, Albuquerque, NM, 87185 USA
Search for more papers by this authorRaymond W. Friddle
Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorJoshua D. Sugar
Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorJonathan L. Snider
Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorRobert D. Horton
Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorBrendan C. Davis
Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorJeffery M. Chames
Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorYi-Sheng Liu
Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
Search for more papers by this authorJinghua Guo
Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
Search for more papers by this authorHarris E. Mason
Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorJeffrey J. Urban
Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
Search for more papers by this authorBrandon C. Wood
Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorMark D. Allendorf
Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorCorresponding Author
Kabeer Jasuja
Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355 India
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Vitalie Stavila
Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550 USA
E-mail: [email protected], [email protected]
Search for more papers by this authorHarini Gunda
Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550 USA
Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355 India
Search for more papers by this authorKeith G. Ray
Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorLeonard E. Klebanoff
Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorChaochao Dun
Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
Search for more papers by this authorMaxwell A. T. Marple
Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorSichi Li
Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorPeter Sharma
Sandia National Laboratories, 1515 Eubank SE, Albuquerque, NM, 87185 USA
Search for more papers by this authorRaymond W. Friddle
Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorJoshua D. Sugar
Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorJonathan L. Snider
Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorRobert D. Horton
Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorBrendan C. Davis
Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorJeffery M. Chames
Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorYi-Sheng Liu
Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
Search for more papers by this authorJinghua Guo
Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
Search for more papers by this authorHarris E. Mason
Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorJeffrey J. Urban
Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
Search for more papers by this authorBrandon C. Wood
Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorMark D. Allendorf
Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550 USA
Search for more papers by this authorCorresponding Author
Kabeer Jasuja
Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355 India
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Vitalie Stavila
Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94550 USA
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Metal boride nanostructures have shown significant promise for hydrogen storage applications. However, the synthesis of nanoscale metal boride particles is challenging because of their high surface energy, strong inter- and intraplanar bonding, and difficult-to-control surface termination. Here, it is demonstrated that mechanochemical exfoliation of magnesium diboride in zirconia produces 3–4 nm ultrathin MgB2 nanosheets (multilayers) in high yield. High-pressure hydrogenation of these multilayers at 70 MPa and 330 °C followed by dehydrogenation at 390 °C reveals a hydrogen capacity of 5.1 wt%, which is ≈50 times larger than the capacity of bulk MgB2 under the same conditions. This enhancement is attributed to the creation of defective sites by ball-milling and incomplete Mg surface coverage in MgB2 multilayers, which disrupts the stable boron–boron ring structure. The density functional theory calculations indicate that the balance of Mg on the MgB2 nanosheet surface changes as the material hydrogenates, as it is energetically favorable to trade a small number of Mg vacancies in Mg(BH4)2 for greater Mg coverage on the MgB2 surface. The exfoliation and creation of ultrathin layers is a promising new direction for 2D metal boride/borohydride research with the potential to achieve high-capacity reversible hydrogen storage at more moderate pressures and temperatures.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding authors upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202205487-sup-0001-SuppMat.pdf1.9 MB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. D. Mboyi, D. Poinsot, J. Roger, K. Fajerwerg, M. L. Kahn, J.-C. Hierso, Small 2021, 17, 2102759.
- 2L. Klebanoff, J. O. Keller, M. H. Fronk, P. B. Scott, Hydrogen Storage Technology: Materials and Applications, CRC Press, Boca Raton, FL 2016, p. 31.
- 3R. Rath, P. Kumar, S. Mohanty, S. K. Nayak, Int. J. Energy Res. 2019, 43, 8931.
- 4R. T. Madsen, L. E. Klebanoff, S. A. M. Caughlan, J. W. Pratt, T. S. Leach, T. B. Appelgate, S. Z. Kelety, H. C. Wintervoll, G. P. Haugom, A. T. Y. Teo, S. Ghosh, Int. J. Hydrogen Energy 2020, 45, 25328.
- 5M. B. Ley, L. H. Jepsen, Y. S. Lee, Y. W. Cho, J. M. Bellosta Von Colbe, M. Dornheim, M. Rokni, J. O. Jensen, M. Sloth, Y. Filinchuk, J. E. Jørgensen, F. Besenbacher, T. R. Jensen, Mater. Today 2014, 17, 122.
- 6U. Eberle, M. Felderhoff, F. Schüth, Angew. Chem., Int. Ed. 2009, 48, 6608.
- 7R. Bowman, B. Fultz, MRS Bull 2002, 27, 688.
- 8H. W. Li, Y. Yan, S. I. Orimo, A. Züttel, C. M. Jensen, Energies 2011, 4, 185.
- 9K. Suresh, D. Aulakh, J. Purewal, D. J. Siegel, M. Veenstra, A. J. Matzger, J. Am. Chem. Soc. 2021, 143, 10727.
- 10B. C. Wood, V. Stavila, N. Poonyayant, T. W. Heo, K. G. Ray, L. E. Klebanoff, T. J. Udovic, J. R. I. Lee, N. Angboonpong, J. D. Sugar, P. Pakawatpanurut, Adv. Mater. Interfaces 2017, 4, 1600803.
- 11A. Schneemann, J. L. White, S. Kang, S. Jeong, L. F. Wan, E. S. Cho, T. W. Heo, D. Prendergast, J. J. Urban, B. C. Wood, M. D. Allendorf, V. Stavila, Chem. Rev. 2018, 118, 10775.
- 12X. Yu, Z. Tang, D. Sun, L. Ouyang, M. Zhu, Prog. Mater. Sci. 2017, 88, 1.
- 13V. Stavila, S. Li, C. Dun, M. A. T. Marple, H. E. Mason, J. L. Snider, J. E. Reynolds, F. el Gabaly, J. D. Sugar, C. D. Spataru, X. Zhou, B. Dizdar, E. H. Majzoub, R. Chatterjee, J. Yano, H. Schlomberg, B. v. Lotsch, J. J. Urban, B. C. Wood, M. D. Allendorf, Angew. Chem., Int. Ed. 2021, 60, 25815.
- 14Y. Cho, S. Li, J. L. Snider, M. A. T. Marple, N. A. Strange, J. D. Sugar, F. El Gabaly, A. Schneemann, S. Kang, M. Kang, H. Park, J. Park, L. F. Wan, H. E. Mason, M. D. Allendorf, B. C. Wood, E. S. Cho, V. Stavila, ACS Nano 2021, 15, 10163.
- 15A. Schneemann, L. F. Wan, A. S. Lipton, Y. S. Liu, J. L. Snider, A. A. Baker, J. D. Sugar, C. D. Spataru, J. Guo, T. S. Autrey, M. Jørgensen, T. R. Jensen, B. C. Wood, M. D. Allendorf, V. Stavila, ACS Nano 2020, 14, 10294.
- 16Q. Lai, T. Wang, Y. Sun, K. F. Aguey-Zinsou, Adv. Mater. Technol. 2018, 3, 1700298.
- 17M. Fichtner, Adv. Eng. Mater. 2005, 7, 443.
- 18P. E. de Jongh, P. Adelhelm, ChemSusChem 2010, 3, 1332.
- 19W. Li, C. Li, H. Ma, J. Chen, J. Am. Chem. Soc. 2007, 129, 6710.
- 20L. Xie, J. Zheng, Y. Liu, Y. Li, X. Li, Chem. Mater. 2008, 20, 282.
- 21Y. Filinchuk, B. Richter, T. R. Jensen, V. Dmitriev, D. Chernyshov, H. Hagemann, Angew. Chem., Int. Ed. 2011, 50, 11162.
- 22G. Li, H. Kobayashi, J. M. Taylor, R. Ikeda, Y. Kubota, K. Kato, M. Takata, T. Yamamoto, S. Toh, S. Matsumura, H. Kitagawa, Nat. Mater. 2014, 13, 802.
- 23M. Konarova, A. Tanksale, J. N. Beltramini, G. Q. Lu, Int. J. Hydrogen Energy 2012, 37, 8370.
- 24S. Zheng, F. Fang, G. Zhou, G. Chen, L. Ouyang, M. Zhu, D. Sun, Chem. Mater. 2008, 20, 3954.
- 25G. Xia, Y. Tan, X. Chen, D. Sun, Z. Guo, H. Liu, L. Ouyang, M. Zhu, X. Yu, Adv. Mater. 2015, 27, 5981.
- 26D. W. Lim, J. W. Yoon, K. Y. Ryu, M. P. Suh, Angew. Chem., Int. Ed. 2012, 51, 9814.
- 27G. Xia, D. Li, X. Chen, Y. Tan, Z. Tang, Z. Guo, H. Liu, Z. Liu, X. Yu, Adv. Mater. 2013, 25, 6238.
- 28L. E. Klebanoff, J. O. Keller, Int. J. Hydrogen Energy 2013, 38, 4533.
- 29J. M. Pasini, C. Corgnale, B. A. van Hassel, T. Motyka, S. Kumar, K. L. Simmons, Int. J. Hydrogen Energy 2013, 38, 9755.
- 30K. G. Ray, L. E. Klebanoff, J. R. I. Lee, V. Stavila, T. W. Heo, P. Shea, A. A. Baker, S. Kang, M. Bagge-Hansen, Y. S. Liu, J. L. White, B. C. Wood, Phys. Chem. Chem. Phys. 2017, 19, 22646.
- 31V. N. Konoplev, V. M. Bakulina, Bull. Acad. Sci. USSR, Div. Chem. Sci. 1971, 20, 136.
10.1007/BF00849335 Google Scholar
- 32Y. Nakamori, K. Miwa, A. Ninomiya, H. Li, N. Ohba, S. I. Towata, A. Züttel, S. I. Orimo, Phys. Rev. B 2006, 74, 045126.
- 33K. Chłopek, C. Frommen, A. Léon, O. Zabara, M. Fichtner, J. Mater. Chem. 2007, 17, 3496.
- 34G. L. Soloveichik, Y. Gao, J. Rijssenbeek, M. Andrus, S. Kniajanski, R. C. Bowman, S. J. Hwang, J. C. Zhao, Int. J. Hydrogen Energy 2009, 34, 916.
- 35H. W. Li, K. Miwa, N. Ohba, T. Fujita, T. Sato, Y. Yan, S. Towata, M. W. Chen, S. Orimo, Nanotechnology 2009, 20, 204013.
- 36J. Yang, X. Zhang, J. Zheng, P. Song, X. Li, Scr. Mater. 2011, 64, 225.
- 37M. Chong, M. Matsuo, S. I. Orimo, T. Autrey, C. M. Jensen, Inorg. Chem. 2015, 54, 4120.
- 38O. Zavorotynska, S. Deledda, B. C. Hauback, Int. J. Hydrogen Energy 2016, 41, 9885.
- 39Y. Zhang, E. Majzoub, V. Ozolinš, C. Wolverton, J. Phys. Chem. C 2012, 116, 10522.
- 40G. Severa, E. Rönnebro, C. M. Jensen, Chem. Commun. 2010, 46, 421.
- 41C. Pistidda, S. Garroni, F. Dolci, E. G. Bardají, A. Khandelwal, P. Nolis, M. Dornheim, R. Gosalawit, T. Jensen, Y. Cerenius, S. Suriñach, M. D. Baró, W. Lohstroh, M. Fichtner, J. Alloys Comp. 2010, 508, 212.
- 42R. J. Newhouse, V. Stavila, S.-J. Hwang, L. E. Klebanoff, J. Z. Zhang, J. Phys. Chem. C 2010, 114, 5224.
- 43H. W. Li, T. Matsunaga, Y. Yan, H. Maekawa, M. Ishikiriyama, S. I. Orimo, J. Alloys Comp. 2010, 505, 654.
- 44Y. S. Liu, K. G. Ray, M. Jørgensen, T. M. Mattox, D. F. Cowgill, H. v. Eshelman, A. M. Sawvel, J. L. Snider, W. York, P. Wijeratne, A. L. Pham, H. Gunda, S. Li, T. W. Heo, S. Kang, T. R. Jensen, V. Stavila, B. C. Wood, L. E. Klebanoff, J. Phys. Chem. C 2020, 124, 21761.
- 45H. Gunda, S. K. Das, K. Jasuja, ChemPhysChem 2018, 19, 880.
- 46S. K. Das, A. Bedar, A. Kannan, K. Jasuja, Sci. Rep. 2015, 5, 10522.
- 47A. L. James, K. Jasuja, RSC Adv. 2017, 7, 1905.
- 48H. Nishino, T. Fujita, N. T. Cuong, S. Tominaka, M. Miyauchi, S. Iimura, A. Hirata, N. Umezawa, S. Okada, E. Nishibori, A. Fujino, T. Fujimori, S. Ito, J. Nakamura, H. Hosono, T. Kondo, J. Am. Chem. Soc. 2017, 139, 13761.
- 49S. K. Das, K. Jasuja, ACS Appl. Nano Mater. 2018, 1, 1612.
- 50R. Saraswat, A. L. James, K. Jasuja, Adv. Appl. Ceram. 2019, 118, 209.
- 51A. L. James, S. Khandelwal, A. Dutta, K. Jasuja, Nanoscale 2018, 10, 20514.
- 52H. Gunda, C. Ghoroi, K. Jasuja, Thermochim. Acta 2020, 690, 178674.
- 53C. F. Holder, R. E. Schaak, ACS Nano 2019, 13, 7359.
- 54S.-E. Kim, I.-J. Shon, J. Nanosci. Nanotechnol. 2021, 21, 3934.
- 55S.-E. Kim, J.-K. Yoon, I.-J. Shon, J. Nanosci. Nanotechnol. 2020, 20, 4253.
- 56L. Zhang, Z. Huang, Y. Liu, Y. Shen, K. Li, Z. Cao, Z. Ren, Y. Jian, Materials 2019, 12, 1926.
- 57N.-R. Park, W.-J. Cho, S.-E. Kim, I.-J. Shon, J. Nanosci. Nanotechnol. 2018, 19, 2295.
- 58S. B. Deshmukh, R. H. Bari, G. E. Patil, D. D. Kajale, G. H. Jain, L. A. Patil, Int. J. Smart Sens. Intel. Sys. 2012, 5, 540.
- 59Y. S. Liu, L. E. Klebanoff, P. Wijeratne, D. F. Cowgill, V. Stavila, T. W. Heo, S. Kang, A. A. Baker, J. R. I. Lee, T. M. Mattox, K. G. Ray, J. D. Sugar, B. C. Wood, Int. J. Hydrogen Energy 2019, 44, 31239.
- 60J. L. Snider, T. M. Mattox, Y. S. Liu, L. F. Wan, P. Wijeratne, M. D. Allendorf, V. Stavila, B. C. Wood, L. E. Klebanoff, Int. J. Hydrogen Energy 2022, 47, 403.
- 61J. L. Snider, Y. S. Liu, A. M. Sawvel, L. F. Wan, V. Stavila, T. M. Mattox, P. Wijeratne, M. D. Allendorf, B. C. Wood, L. E. Klebanoff, Int. J. Hydrogen Energy 2022, 47, 387.
- 62D. Parviz, F. Irin, S. A. Shah, S. Das, C. B. Sweeney, M. J. Green, Adv. Mater. 2016, 28, 8796.
- 63C. Cheng, D. Li, Adv. Mater. 2013, 25, 13.
- 64M. v. Landau, R. Vidruk, D. Vingurt, D. Fuks, M. Herskowitz, Rev. Chem. Eng. 2014, 30, 379.
- 65O. Zavorotynska, A. El-Kharbachi, S. Deledda, B. C. Hauback, Int. J. Hydrogen Energy 2016, 41, 14387.
- 66A. Remhof, Y. Yan, D. Rentsch, A. Borgschulte, C. M. Jensen, A. Züttel, J. Mater. Chem. A 2014, 2, 7244.
- 67D. Sethio, L. M. Lawson Daku, H. Hagemann, Int. J. Hydrogen Energy 2016, 41, 6814.
- 68S. J. Hwang, R. C. BowmanJr., J. W. Reiter, J. Rijssenbeek, G. L. Soloveichik, J.-C. Zhao, H. Kabbour, | C. C. Ahn, J. Phys. Chem. Lett. 2008, 112, 3164.
- 69Y. Wang, K. Michel, Y. Zhang, C. Wolverton, Phys. Rev. B 2015, 91, 155431.
- 70S. Li, H. Gunda, K. G. Ray, C. S. Wong, P. Xiao, R. W. Friddle, Y. S. Liu, S. Y. Kang, C. Dun, J. D. Sugar, R. D. Kolasinski, L. F. Wan, A. A. Baker, J. R. I. Lee, J. J. Urban, K. Jasuja, M. D. Allendorf, V. Stavila, B. C. Wood, Nat. Commun. 2021, 12, 6268.
- 71K. G. Ray, L. E. Klebanoff, V. Stavila, S. Kang, L. F. Wan, S. Li, T. W. Heo, M. D. Allendorf, J. R. I. Lee, A. A. Baker, B. C. Wood, ACS Appl. Mater. Interfaces 2022, 14, 20430.
- 72C. Pistidda, A. Santhosh, P. Jerabek, Y. Shang, A. Girella, C. Milanese, M. Dore, S. Garroni, S. Bordignon, M. R. Chierotti, J. Phys. Energy 2021, 3, 044001.
- 73C. Sugai, S. Kim, G. Severa, J. L. White, N. Leick, M. B. Martinez, T. Gennett, V. Stavila, C. Jensen, ChemPhysChem 2019, 20, 1301.
- 74R. Patidar, H. Gunda, A. K. Varma, R. Gawas, S. K. Das, K. Jasuja, Ceram. Int. 2020, 46, 28324.
- 75A. L. James, M. Lenka, N. Pandey, A. Ojha, A. Kumar, R. Saraswat, P. Thareja, V. Krishnan, K. Jasuja, K. Jasuja, Nanoscale 2020, 12, 17121.
- 76H. Gunda, L. E. Klebanoff, P. A. Sharma, A. K. Varma, V. Dolia, K. Jasuja, V. Stavila, ACS Mater. Lett. 2021, 3, 535.
- 77G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 78G. Kresse, J. Hafner, Phys. Rev. B 1994, 49, 14251.
- 79G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.
- 80G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- 81J. P. Perdew, K. Burke, Int. J. Quantum Chem. 1996, 57, 309.