Synthesis and Photophysical Properties of Light-Harvesting Gold Nanoclusters Fully Functionalized with Antenna Chromophores
Kyunglim Pyo
Department of Chemistry, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorHongmei Xu
Department of Chemistry, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorSang Myeong Han
Department of Chemistry, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorShivi Saxena
Department of Chemistry, Western Michigan University, Kalamazoo, MI, 49008 USA
Search for more papers by this authorSook Young Yoon
Department of Chemistry, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorGary Wiederrecht
Center for Nanoscale Materials, Argonne National Laboratory, Chicago, IL, 60439 USA
Search for more papers by this authorCorresponding Author
Guda Ramakrishna
Department of Chemistry, Western Michigan University, Kalamazoo, MI, 49008 USA
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Dongil Lee
Department of Chemistry, Yonsei University, Seoul, 03722 Republic of Korea
E-mail: [email protected], [email protected]
Search for more papers by this authorKyunglim Pyo
Department of Chemistry, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorHongmei Xu
Department of Chemistry, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorSang Myeong Han
Department of Chemistry, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorShivi Saxena
Department of Chemistry, Western Michigan University, Kalamazoo, MI, 49008 USA
Search for more papers by this authorSook Young Yoon
Department of Chemistry, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorGary Wiederrecht
Center for Nanoscale Materials, Argonne National Laboratory, Chicago, IL, 60439 USA
Search for more papers by this authorCorresponding Author
Guda Ramakrishna
Department of Chemistry, Western Michigan University, Kalamazoo, MI, 49008 USA
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Dongil Lee
Department of Chemistry, Yonsei University, Seoul, 03722 Republic of Korea
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
The development of efficient light-harvesting systems is important to understand the key aspects of solar-energy conversion processes and to utilize them in various photonic applications. Here, atomically well-defined gold nanoclusters are reported as a new platform to fabricate artificial light-harvesting systems. An efficient amide coupling method is developed to synthesize water-soluble Au22 clusters fully protected with pyrene chromophores by taking advantage of their facile phase-transfer reaction. The synthesized Au22 clusters with densely packed 18 pyrene chromophores (Au22–PyB18) exhibit triple-emission in blue, green, and red wavelength regions arising respectively from pyrene monomer, pyrene excimer, and Au22 emission, producing bright white light emission together. The photoluminescence of Au22 is enhanced by more than tenfold, demonstrating that pyrenes at the periphery efficiently channel the absorbed energy to the luminescent Au22 at the center. A combination of femtosecond transient absorption and anisotropy measurements of Au22–PyB18 explicitly reveals three main decay components of 220 fs, 3.5 ps, and 160 ps that can be assigned to energy migration between pyrenes and energy transfer processes from pyrene monomer and excimer to the central Au22, respectively.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll202004836-sup-0001-SuppMat.pdf320.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. E. Blankenship, Molecular Mechanisms of Photosynthesis, John Wiley & Sons, Hoboken, NJ 2014.
- 2R. Croce, H. van Amerongen, Nat. Chem. Biol. 2014, 10, 492.
- 3G. D. Scholes, G. R. Fleming, A. Olaya-Castro, R. van Grondelle, Nat. Chem. 2011, 3, 763.
- 4D. Coles, L. C. Flatten, T. Sydney, E. Hounslow, S. K. Saikin, A. Aspuru-Guzik, V. Vedral, J. K.-H. Tang, R. A. Taylor, J. M. Smith, D. G. Lidzey, Small 2017, 13, 1701777.
- 5J. Barber, Chem. Soc. Rev. 2009, 38, 185.
- 6T. Mirkovic, E. E. Ostroumov, J. M. Anna, R. van Grondelle, Govindjee, G. D. Scholes, Chem. Rev. 2017, 117, 249.
- 7G. R. Fleming, R. van Grondelle, Curr. Opin. Struct. Biol. 1997, 7, 738.
- 8J. H. Kim, D. H. Nam, Y. W. Lee, Y. S. Nam, C. B. Park, Small 2014, 10, 1272.
- 9X. Ji, Z. Su, P. Wang, G. Ma, S. Zhang, Small 2016, 12, 4753.
- 10S. Bhattacharyya, B. Jana, A. Patra, ChemPhysChem 2015, 16, 796.
- 11C. Wu, Y. Zheng, C. Szymanski, J. McNeill, J. Phys. Chem. C 2008, 112, 1772.
- 12D. Sun, Y. Tian, Y. Zhang, Z. Xu, M. Y. Sfeir, M. Cotlet, O. Gang, ACS Nano 2015, 9, 5657.
- 13S. Guo, Y. Song, Y. He, X. Y. Hu, L. Wang, Angew. Chem. 2018, 130, 3217.
- 14V. Balzani, P. Ceroni, M. Maestri, V. Vicinelli, Curr. Opin. Chem. Biol. 2003, 7, 657.
- 15A. Adronov, J. M. Fréchet, Chem. Commun. 2000, 1701.
- 16A. Nantalaksakul, D. R. Reddy, C. J. Bardeen, S. Thayumanavan, Photosynth. Res. 2006, 87, 133.
- 17J. M. Fréchet, Science 1994, 263, 1710.
- 18D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, P. Smith, Polym. J. 1985, 17, 117.
- 19E. M. de Brabander-van den Berg, E. Meijer, Angew. Chem., Int. Ed. Engl. 1993, 32, 1308.
- 20K. Justin Thomas, A. L. Thompson, A. V. Sivakumar, C. J. Bardeen, S. Thayumanavan, J. Am. Chem. Soc. 2005, 127, 373.
- 21X. Zhang, Y. Zeng, T. Yu, J. Chen, G. Yang, Y. Li, J. Phys. Chem. Lett. 2014, 5, 2340.
- 22D. Astruc, C. Ornelas, J. Ruiz, Acc. Chem. Res. 2008, 41, 841.
- 23C. Ornelas, Macromol. Chem. Phys. 2016, 217, 149.
- 24M. A. van Dongen, A. Desai, B. G. Orr, J. R. Baker Jr., M. M. B. Holl, Polymer 2013, 54, 4126.
- 25J. Ruiz, G. Lafuente, S. Marcen, C. Ornelas, S. Lazare, E. Cloutet, J.-C. Blais, D. Astruc, J. Am. Chem. Soc. 2003, 125, 7250.
- 26W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, J. C. Hummelen, Nat. Photonics 2012, 6, 560.
- 27H. C. Fry, Y. Liu, N. M. Dimitrijevic, T. Rajh, Nat. Commun. 2014, 5, 4606.
- 28E. Galoppini, Coord. Chem. Rev. 2004, 248, 1283.
- 29S. Kundu, S. Bhattacharyya, A. Patra, Mater. Horiz. 2015, 2, 60.
- 30L. Zedler, F. Theil, A. Csáki, W. Fritzsche, S. Rau, M. Schmitt, J. Popp, B. Dietzek, RSC Adv. 2012, 2, 4463.
- 31K. G. Thomas, P. V. Kamat, Acc. Chem. Res. 2003, 36, 888.
- 32N. Nerambourg, M. H. Werts, M. Charlot, M. Blanchard-Desce, Langmuir 2007, 23, 5563.
- 33I.-I. S. Lim, F. Goroleski, D. Mott, N. Kariuki, W. Ip, J. Luo, C.-J. Zhong, J. Phys. Chem. B 2006, 110, 6673.
- 34A. El-Zohry, A. Orthaber, B. Zietz, J. Phys. Chem. C 2012, 116, 26144.
- 35M. Pastore, F. De Angelis, ACS Nano 2010, 4, 556.
- 36C.-A. J. Lin, T.-Y. Yang, C.-H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J.-L. Shen, H.-H. Wang, H.-I. Yeh, W. J. Parak, W. H. Chang, ACS Nano 2009, 3, 395.
- 37Y. Du, H. Sheng, D. Astruc, M. Zhu, Chem. Rev. 2020, 120, 526.
- 38R. Jin, Nanoscale 2015, 7, 1549.
- 39R. Jin, Y. Pei, T. Tsukuda, Acc. Chem. Res. 2019, 52, 1.
- 40K. Kwak, W. Choi, Q. Tang, D.-e. Jiang, D. Lee, J. Mater. Chem. A 2018, 6, 19495.
- 41M. Walter, J. Akola, O. Lopez-Acevedo, P. D. Jadzinsky, G. Calero, C. J. Ackerson, R. L. Whetten, H. Grönbeck, H. Häkkinen, Proc. Natl. Acad. Sci. USA 2008, 105, 9157.
- 42K. Pyo, V. D. Thanthirige, K. Kwak, P. Pandurangan, G. Ramakrishna, D. Lee, J. Am. Chem. Soc. 2015, 137, 8244.
- 43K. Pyo, N. H. Ly, S. Y. Yoon, Y. Shen, S. Y. Choi, S. Y. Lee, S. W. Joo, D. Lee, Adv. Healthcare Mater. 2017, 6, 1700203.
- 44G. Li, R. Jin, Acc. Chem. Res. 2013, 46, 1749.
- 45Z. Wu, M. Wang, J. Yang, X. Zheng, W. Cai, G. Meng, H. Qian, H. Wang, R. Jin, Small 2012, 8, 2027.
- 46A. Aguila, R. W. Murray, Langmuir 2000, 16, 5949.
- 47B. Varnholt, R. Letrun, J. J. Bergkamp, Y. Fu, O. Yushchenko, S. Decurtins, E. Vauthey, S.-X. Liu, T. Bürgi, Phys. Chem. Chem. Phys. 2015, 17, 14788.
- 48M. S. Devadas, K. Kwak, J.-W. Park, J.-H. Choi, C.-H. Jun, E. Sinn, G. Ramakrishna, D. Lee, J. Phys. Chem. Lett. 2010, 1, 1497.
- 49K. Pyo, V. D. Thanthirige, S. Y. Yoon, G. Ramakrishna, D. Lee, Nanoscale 2016, 8, 20008.
- 50A. Williams, I. T. Ibrahim, J. Am. Chem. Soc. 1981, 103, 7090.
- 51K. Nam, T. Kimura, A. Kishida, Macromol. Biosci. 2008, 8, 32.
- 52D. Bartczak, A. G. Kanaras, Langmuir 2011, 27, 10119.
- 53G. T. Hermanson, in Bioconjugate Techniques, 3rd ed., (Ed: G. T. Hermanson), Academic Press, Boston, MA 2013, Ch. 4.
- 54X. Yuan, Z. Luo, Q. Zhang, X. Zhang, Y. Zheng, J. Y. Lee, J. Xie, ACS Nano 2011, 5, 8800.
- 55Y. Wei, J. Yang, J. Y. Ying, Chem. Commun. 2010, 46, 3179.
- 56R. A. Sperling, W. J. Parak, Philos. Trans. R. Soc., A 2010, 368, 1333.
- 57M. Yüce, H. Kurt, RSC Adv. 2017, 7, 49386.
- 58E. Psarra, U. König, M. Müller, E. Bittrich, K.-J. Eichhorn, P. B. Welzel, M. Stamm, P. Uhlmann, ACS Omega 2017, 2, 946.
- 59E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Muñoz Javier, W. J. Parak, Nano Lett. 2005, 5, 585.
- 60B. I. Ipe, K. G. Thomas, J. Phys. Chem. B 2004, 108, 13265.
- 61K. Pyo, N. H. Ly, S. M. Han, M. bin Hatshan, A. Abuhagr, G. Wiederrecht, S.-W. Joo, G. Ramakrishna, D. Lee, J. Phys. Chem. Lett. 2018, 9, 5303.
- 62D. M. Jonas, M. J. Lang, Y. Nagasawa, T. Joo, G. R. Fleming, J. Phys. Chem. 1996, 100, 12660.
- 63G. Fleming, Chemical Applications of Ultrafast Spectroscopy, Oxford University Press, New York 1986.
- 64O. Varnavski, A. Leanov, L. Liu, J. Takacs, T. Goodson, J. Phys. Chem. B 2000, 104, 179.
- 65M. I. Ranasinghe, O. P. Varnavski, J. Pawlas, S. I. Hauck, J. Louie, J. F. Hartwig, T. Goodson, J. Am. Chem. Soc. 2002, 124, 6520.
- 66O. P. Varnavski, J. C. Ostrowski, L. Sukhomlinova, R. J. Twieg, G. C. Bazan, T. Goodson, J. Am. Chem. Soc. 2002, 124, 1736.
- 67T. Goodson, III, Annu. Rev. Phys. Chem. 2005, 56, 581.
- 68O. Varnavski, X. Yan, O. Mongin, M. Blanchard-Desce, T. Goodson, J. Phys. Chem. C 2007, 111, 149.
- 69S. A. Lahankar, R. West, O. Varnavski, X. Xie, T. Goodson III, L. Sukhomlinova, R. Twieg, J. Chem. Phys. 2004, 120, 337.
- 70E. Badaeva, M. R. Harpham, R. Guda, O. Suzer, C.-Q. Ma, P. Bauerle, T. Goodson III, S. Tretiak, J. Phys. Chem. B 2010, 114, 15808.
- 71M. Lee, I. Song, M. Hong, J. Y. Koo, H. C. Choi, Adv. Funct. Mater. 2018, 28, 1703509.
- 72Q.-W. Zhang, D. Li, X. Li, P. B. White, J. Mecinović, X. Ma, H. Ågren, R. J. Nolte, H. Tian, J. Am. Chem. Soc. 2016, 138, 13541.
- 73Y.-S. Chen, H. Choi, P. V. Kamat, J. Am. Chem. Soc. 2013, 135, 8822.
- 74Y.-S. Chen, P. V. Kamat, J. Am. Chem. Soc. 2014, 136, 6075.
- 75L.-Y. Chen, C.-W. Wang, Z. Yuan, H.-T. Chang, Anal. Chem. 2015, 87, 216.
- 76L. Zhang, E. Wang, Nano Today 2014, 9, 132.
- 77X.-R. Song, N. Goswami, H.-H. Yang, J. Xie, Analyst 2016, 141, 3126.
- 78K. Bhattacharyya, S. Mukherjee, Bull. Chem. Soc. Jpn. 2018, 91, 447.