Oxygen-Doped Nickel Iron Phosphide Nanocube Arrays Grown on Ni Foam for Oxygen Evolution Electrocatalysis
Wenguang Xi
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorCorresponding Author
Gang Yan
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
College of Material Science and Engineering, Jilin Jianzhu University, Changchun, 130118 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorZhongling Lang
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorYuanyuan Ma
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorCorresponding Author
Huaqiao Tan
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorHaotian Zhu
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorYonghui Wang
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorCorresponding Author
Yangguang Li
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorWenguang Xi
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorCorresponding Author
Gang Yan
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
College of Material Science and Engineering, Jilin Jianzhu University, Changchun, 130118 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorZhongling Lang
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorYuanyuan Ma
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorCorresponding Author
Huaqiao Tan
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorHaotian Zhu
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorYonghui Wang
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorCorresponding Author
Yangguang Li
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorAbstract
A rationally designed oxygen evolution reaction (OER) catalyst with advanced structural and compositional superiority is highly desirable to optimize electrocatalytic performance. Prussian blue analogues (PBAs) with adjustable element compositions and accessible porous structures represent a promising precursor for the preparation of OER catalysts. Herein, oxygen-doped nickel iron phosphide nanocube arrays (Ni2P/(NiFe)2P(O) NAs) grown on Ni foam is rationally designed and fabricated from PBAs. The porous structure and the synergistic effect of Ni and Fe enable superior electrocatalytic performance and stability toward the OER in alkaline electrolytes. Density functional theory calculations reveal that Fe-incorporated Ni2P can generate new active sites on the Fe atoms, and the energy barriers of the intermediates and products are decreased efficiently in the presence of surface doped oxygen, both processes are crucial factors for enhanced catalytic performances. In 1 m KOH, the Ni2P/(NiFe)2P(O) NAs afford current densities of 10 and 800 mA cm−2 at overpotentials of 150 and 530 mV, respectively, which outperform the commercial noble metal IrO2. Ni2P/(NiFe)2P(O) NAs also have long-term stability over 100 h at a high current density. The present approach may provide a new avenue for the controlled assembly of nanoarrays for energy storage and conversion applications.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201802204-sup-0001-S1.pdf3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, D. G. Nocera, Chem. Rev. 2010, 110, 6474.
- 2F. Cheng, J. Chen, Chem. Soc. Rev. 2012, 41, 2172.
- 3W. T. Hong, M. Risch, K. A. Stoerzinger, A. Grimaud, J. Suntivichb, Y. Shao Horn, Energy Environ. Sci. 2015, 8, 1404.
- 4Y. P. Liu, Q. J. Li, R. Si, G. D. Li, W. Li, D. P Liu, D. J. Wang, L. Sun, Y. Zhang, X. X. Zou, Adv. Mater. 2017, 29, 1606200.
- 5I. S. Amiinu, Z. H. Pu, X. B. Liu, K. A. Owusu, H. G. R. Monestel, F. O. Boakye, H. N. Zhang, S. C. Mu, Adv. Funct. Mater. 2017, 27, 1702300.
- 6X.-Y. Yu, Y. Feng, B. Y. Guan, X. W. (David) Lou, U. Paik, Energy Environ. Sci. 2016, 9, 1246.
- 7I. S. Amiinu, X. B. Liu, Z. H. Pu, W. Q. Li, Q. D. Li, J. Zhang, H. L. Tang, H. N. Zhang, S. C. Mu, Adv. Funct. Mater. 2018, 28, 1704638.
- 8W. Zhang, Y. Z. Wu, J. Qi, M. X. Chen, R. Cao, Adv. Energy Mater. 2017, 7, 1602547.
- 9Z. K. Kou, T. Meng, B. B. Guo, I. S. Amiinu, W. Q. Li, J. Zhang, S. C. Mu, Adv. Funct. Mater. 2017, 27, 1604904.
- 10F. Hu, S. L. Zhu, S. M. Chen, Y. Li, L. Ma, T. P. Wu, Y. Zhang, C. M. Wang, C. C. Liu, X. J. Yang, L. Song, X. W. Yang, Y. J. Xiong, Adv. Mater. 2017, 29, 1606570.
- 11L. S. Xie, R. Zhang, L. A. Cui, D. N. Liu, S. Hao, Y. J. Ma, G. Du, A. M. Asiri, X. P. Sun, Angew. Chem., Int. Ed. 2017, 56, 1064.
- 12C. X. Guo, Y. Zheng, J. R. Ran, F. X. Xie, M. Jaroniec, S. Z. Qiao, Angew. Chem., Int. Ed. 2017, 56, 8539.
- 13D. Friebel, M. W. Louie, M. Bajdich, K. E. Sanwald, Y. Cai, A. M. Wise, M. J. Cheng, D. Sokaras, T. C. Weng, R. Alonso-Mori, R. C. Davis, J. R. Bargar, J. K. Norskov, A. Nilsson, A. T. Bell, J. Am. Chem. Soc. 2015, 137, 1305.
- 14B. Zhang, X. L. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. G. Melchor, L. L. Han, J. X. Xu, M. Liu, L. R. Zheng, F. P. G. D. Arquer, C. T. Dinh, F. J. Fan, M. J. Yuan, E. Yassitepe, N. Chen, T. Regier, P. F. Liu, Y. H. Li, P. D. Luna, A. Janmohamed, H. L. Xin, H. G. Yang, A. Vojvodic, E. H. Sargent, Science 2016, 352, 333.
- 15N. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu, H. M. Chen, Chem. Soc. Rev. 2017, 46, 337.
- 16Y. Yang, Z. Y. Lin, S. Q. Gao, J. W. Su, Z. Y. Lun, G. L. Xia, J. T. Chen, R. R. Zhang, Q. W. Chen, ACS Catal. 2017, 7, 469.
- 17B. Q. Li, S. Y. Zhang, C. Tang, X. Y. Cui, Q. Zhang, Small 2017, 13, 1700610.
- 18X. F. Xiao, C. T. He, S. L. Zhao, J. Li, W. S. Lin, Z. K. Yuan, Q. Zhang, S. Y. Wang, L. M. Dai, D. S. Yu, Energy Environ. Sci. 2017, 10, 893.
- 19G. Prieto, H. Tuysuz, N. Duyckaerts, J. Knossalla, G. H. Wang, F. Schuth, Chem. Rev. 2016, 116, 14056.
- 20T. Kwon, H. Hwang, Y. J. Sa, J. Park, H. Baik, S. H. Joo, K. Lee, Adv. Funct. Mater. 2017, 27, 1604688.
- 21N. K. Chaudhari, H. Jin, B. Kim, K. Lee, Nanoscale 2017, 9, 12231.
- 22T. Y. Ma, S. Dai, S. Z. Qiao, Mater. Today 2016, 19, 265.
- 23A. Paolella, C. Faure, V. Timoshevskii, S. Marras, G. Bertoni, A. Guerfi, A. Vijh, M. Armand, K. Zaghib, J. Mater. Chem. A 2017, 5, 18919.
- 24Y. X. Xu, S. S. Zheng, H. F. Tang, X. T. Guo, H. H. Xue, H. Pang, Energy Storage Mater. 2017, 9, 11.
- 25J. W. Chen, S. H. Li, V. Kumar, P. S. Lee, Adv. Energy Mater. 2017, 7, 1700180.
- 26L. Zhang, H. B. Wu, X. W. (David) Lou, J. Am. Chem. Soc. 2013, 135, 10664.
- 27M. Zeng, Y. L. Liu, F. P. Zhao, K. Q. Nie, N. Han, X. X. Wang, W. J. Huang, X. N. Song, J. Zhong, Y. G. Li, Adv. Funct. Mater. 2016, 26, 4397.
- 28Y. C. Ge, P. Dong, S. R. Craig, P. M. Ajayan, M. X. Ye, J. F. Shen, Adv. Energy Mater. 2018, 8, 1800484.
- 29J. W. Nai, Y. Lu, L. Yu, X. Wang, X. W. (David) Lou, Adv. Mater. 2017, 29, 1703870.
- 30X. Y. Yu, L. Yu, H. B. Wu, X. W. (David) Lou, Angew. Chem., Int. Ed. 2015, 54, 5331.
- 31Y. J. Fang, X. Y. Yu, X. W. (David) Lou, Adv. Mater. 2018, 30, 1706668.
- 32B. K. Kang, M. H. Woo, J. Lee, Y. H. Song, Z. L. Wang, Y. N. Guo, Y. Yamauchi, J. H. Kim, B. Lim, D. H. Yoon, J. Mater. Chem. A 2017, 5, 4320.
- 33Y. N. Guo, J. Tang, Z. L. Wang, Y. M. Kang, Y. Bando, Y. Yamauchi, Nano Energy 2018, 47, 494.
- 34X. H. Zhu, M. J. Liu, Y. Liu, R. W. Chen, Z. Nie, J. H. Li, S. Z. Yao, J. Mater. Chem. A 2016, 4, 8974.
- 35A. Sivanantham, P. Ganesan, L. Estevez, B. P. Mcgrail, R. K. Motkuri, S. Shanmugam, Adv. Energy Mater. 2018, 8, 1702838.
- 36X. J. Cai, W. Gao, M. Ma, M. Y. Wu, L. L. Zhang, Y. Y. Zheng, H. R. Chen, J. L. Shi, Adv. Mater. 2015, 27, 6382.
- 37B. Y. Guan, L. Yu, X. W. (David) Lou, Angew. Chem., Int. Ed. 2017, 56, 2386.
- 38L. Yu, H. B. Wu, X. W. (David) Lou, Acc. Chem. Res. 2017, 50, 293.
- 39L. Yu, J. F. Yang, B. Y. Guan, Y. Lu, X. W. (David) Lou, Angew. Chem. 2018, 130, 178.
10.1002/ange.201710877 Google Scholar
- 40Z. H. Li, M. F. Shao, L. Zhou, R. K. Zhang, C. Zhang, M. Wei, D. G. Evans, X. Duan, Adv. Mater. 2016, 28, 2337.
- 41P. L. He, X. Y. Yu, X. W. (David) Lou, Angew. Chem. 2017, 129, 3955.
10.1002/ange.201612635 Google Scholar
- 42L. Zhang, C. Chang, C. W. Hsu, C. W. Chang, S. Y. Lu, J. Mater. Chem. A 2017, 5, 19656.
- 43X. Y. Yu, Y. Feng, B. Y. Guan, X. W. Lou, U. Paik, Energy Environ. Sci. 2016, 9, 1246.
- 44P. Y. Wang, Z. H. Pu, Y. H. Li, L. Wu, Z. K. Tu, M. Jiang, Z. K. Kou, I. S. Amiinu, S. C. Mu, ACS Appl. Mater. Interfaces 2017, 9, 26001.
- 45Z. H. Pu, C. T. Zhang, I. S. Amiinu, W. Q. Li, L. Wu, S. C. Mu, ACS Appl. Mater. Interfaces 2017, 9, 16187.
- 46L. Tian, X. Yan, X. Chen, ACS Catal. 2016, 6, 5441.
- 47Y. Zhang, H. Zhang, Y. Feng, L. Liu, Y. Wang, ACS Appl. Mater. Interfaces 2015, 7, 26684.
- 48T. Y. Ma, S. Dai, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2014, 136, 13925.
- 49J. Yin, Y. X. Li, F. Lv, M. Lu, K. Sun, W. Wang, L. Wang, F. Y. Cheng, Y. F. Li, P. X. Xi, S. J. Guo, Adv. Mater. 2017, 29, 1704681.
- 50H. Q. Zhou, F. Yu, J. Y. Sun, R. He, S. Chen, C. W. Chu, Z. F. Ren, Proc. Natl. Acad. Sci. USA 2017, 114, 5607.
- 51H. J. Zhang, X. P. Li, A. Hahnel, V. Naumann, C. lin, S. Azimi, S. L. Schweizer, W. Maijenburg, R. B. Wehrspohn, Adv. Funct. Mater. 2018, 28, 1706847.
- 52B. Song, K. Li, Y. Yin, T. Wu, L. N. Dang, M. Cabán-Acevedo, J. C. Han, T. L. Gao, X. J. Wang, Z. H. Zhang, J. R. Schmidt, P. Xu, S. Jin, ACS Catal. 2017, 7, 8549.
- 53R. D. L. Rodney, M. S. Prevot, R. D. Fagan, S. Trudel, C. P. Berlinguette, J. Am. Chem. Soc. 2013, 135, 11580.
- 54D. Friebel, M. W. Louie, M. Bajdich, K. E. Sanwald, Y. Cai, A. M. Wise, M. Cheng, D. Sokaras, T. Weng, R. Alonso-Mori, R. C. Davis, J. R. Bargar, K. Norskov, A. Nilsson, A. T. Bell, J. Am. Chem. Soc. 2015, 137, 1305.
- 55J. Y. Xu, J. J. Li, D. H. Xiong, B. S. Zhang, Y. F. Liu, K. H. Wu, I. Amorim, W. Li, L. F. Liu, Chem. Sci. 2018, 9, 3470.