Polyprodrug Antimicrobials: Remarkable Membrane Damage and Concurrent Drug Release to Combat Antibiotic Resistance of Methicillin-Resistant Staphylococcus aureus
Correction(s) for this article
-
Polyprodrug Antimicrobials: Remarkable Membrane Damage and Concurrent Drug Release to Combat Antibiotic Resistance of Methicillin-Resistant Staphylococcus aureus
- Volume 15Issue 33Small
- First Published online: August 16, 2019
Bing Cao
MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou, 510631 China
College of Biophotonics, South China Normal University, Guangzhou, 510631 China
Search for more papers by this authorFengfeng Xiao
MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou, 510631 China
College of Biophotonics, South China Normal University, Guangzhou, 510631 China
Search for more papers by this authorCorresponding Author
Da Xing
MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou, 510631 China
College of Biophotonics, South China Normal University, Guangzhou, 510631 China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Xianglong Hu
MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou, 510631 China
College of Biophotonics, South China Normal University, Guangzhou, 510631 China
E-mail: [email protected], [email protected]Search for more papers by this authorBing Cao
MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou, 510631 China
College of Biophotonics, South China Normal University, Guangzhou, 510631 China
Search for more papers by this authorFengfeng Xiao
MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou, 510631 China
College of Biophotonics, South China Normal University, Guangzhou, 510631 China
Search for more papers by this authorCorresponding Author
Da Xing
MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou, 510631 China
College of Biophotonics, South China Normal University, Guangzhou, 510631 China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Xianglong Hu
MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou, 510631 China
College of Biophotonics, South China Normal University, Guangzhou, 510631 China
E-mail: [email protected], [email protected]Search for more papers by this authorAbstract
The increased threat of antibiotic resistance has created an urgent need for new strategies. Herein, polyprodrug antimicrobials are proposed to mimic antimicrobial peptides appended with a concurrent drug release property, exhibiting broad-spectrum antibacterial activity and especially high potency to inhibit methicillin-resistant Staphylococcus aureus (MRSA) without inducing resistance. Two series of polyprodrug antimicrobials are fabricated by facile polymerization of triclosan prodrug monomer (TMA) and subsequent quaternization of hydrophilic poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA), affording PDMAEMA-b-PTMA and PQDMA-b-PTMA, respectively. Optimized samples with proper hydrophobic ratio are screened out, which exhibit remarkable bacterial inhibition and low hemolysis toward red blood cells. Furthermore, synergistic antibacterial mechanisms contribute to the bacteria killing, including serious membrane damage, increased out-diffusion of cytosolic milieu across the membrane, and intracellular reductive milieu-mediated triclosan release. No detectable resistance is observed for polyprodrug antimicrobials against MRSA, which is demonstrated to be better than commercial triclosan and vancomycin against in vivo MRSA-infected burn models and a promising approach to the hurdle of antibiotic resistance in biomedicine.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201802008-sup-0001-S1.pdf1.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) S. J. Lam, N. M. O'Brien-Simpson, N. Pantarat, A. Sulistio, E. H. H. Wong, Y.-Y. Chen, J. C. Lenzo, J. A. Holden, A. Blencowe, E. C. Reynolds, G. G. Qiao, Nat. Microbiol. 2016, 1, 16162; b) S. Xie, S. Manuguri, G. Proietti, J. Romson, Y. Fu, A. K. Inge, B. Wu, Y. Zhang, D. Hall, O. Ramstrom, M. D. Yan, Proc. Natl. Acad. Sci. USA 2017, 114, 8464; c) H. Y. Chen, M. Zhang, B. W. Li, D. Chen, X. Y. Dong, Y. H. Wang, Y. Q. Gu, Biomaterials 2015, 53, 532; d) S. S. Chen, C. F. Ma, G. Z. Zhang, Prog. Org. Coat. 2017, 104, 58.
- 2B. Pelaz, C. H. Alexiou, R. A. Alvarez-Puebla, F. Alves, A. M. Andrews, S. Ashraf, L. P. Balogh, L. Ballerini, A. Bestetti, C. Brendel, S. Bosi, M. Carril, W. C. W. Chan, C. Y. Chen, X. D. Chen, X. Y. Chen, Z. Cheng, D. X. Cui, J. Z. Du, C. Dullin, A. Escudero, N. Feliu, M. Y. Gao, M. George, Y. Gogotsi, A. Grunweller, Z. W. Gu, N. J. Halas, N. Hampp, R. K. Hartmann, M. C. Hersam, P. Hunziker, J. Jian, X. Y. Jiang, P. Jungebluth, P. Kadhiresan, K. Kataoka, A. Khademhosseini, J. Kopecek, N. A. Kotov, H. F. Krug, D. S. Lee, C. M. Lehr, K. W. Leong, X. J. Liang, M. L. Lim, L. M. Liz-Marzan, X. M. Ma, P. Macchiarini, H. Meng, H. Mohwald, P. Mulvaney, A. E. Nel, S. M. Nie, P. Nordlander, T. Okano, J. Oliveira, T. H. Park, R. M. Penner, M. Prato, V. Puntes, V. M. Rotello, A. Samarakoon, R. E. Schaak, Y. Q. Shen, S. Sjoqvist, A. G. Skirtach, M. G. Soliman, M. M. Stevens, H. W. Sung, B. Z. Tang, R. Tietze, B. N. Udugama, J. S. VanEpps, T. Weil, P. S. Weiss, I. Willner, Y. Z. Wu, L. L. Yang, Z. Yue, Q. Zhang, Q. Zhang, X. E. Zhang, Y. L. Zhao, X. Zhou, W. J. Parak, ACS Nano 2017, 11, 2313.
- 3S. M. Lehar, T. Pillow, M. Xu, L. Staben, K. K. Kajihara, R. V. Andlen, L. DePalatis, H. Raab, W. L. Hazenbos, J. H. Morisaki, J. Kim, S. Park, M. Darwish, B. C. Lee, H. Hernandez, K. M. Loyet, P. Lupardus, R. N. Fong, D. H. Yan, C. C. Halouni, E. Luis, Y. Khalfin, E. Plise, J. C. Heong, J. P. Lyssikatos, M. Strandh, K. Koefoed, P. S. Andersen, J. A. Flygare, M. W. Tan, E. J. Brown, S. M. Ariathasan, Nature 2015, 527, 323.
- 4J. C. Cheng, W. Chin, H. H. Dong, L. Xu, G. S. Zhong, Y. Huang, L. J. Li, K. J. Xu, M. Wu, J. L. Hedrick, Y. Y. Yang, W. M. Fan, Adv. Healthcare Mater. 2015, 4, 2128.
- 5a) H. Nikaido, Annu. Rev. Biochem. 2009, 78, 119; b) A. C. Engler, N. Wiradharma, Z. Y. Ong, D. J. Coady, J. L. Hedrick, Y. Y. Yang, Nano Today 2012, 7, 201; c) C. L. Zhu, Q. Yang, L. B. Liu, S. Wang, Angew. Chem., Int. Ed. 2011, 50, 9607.
- 6a) M. J. Rybak, B. M. Lomaestro, J. C. Rotschafer, R. C. Moellering, W. A. Craig, M. Billeter, J. R. Dalovisio, D. P. Levine, Pharmacotherapy 2009, 29, 1275; b) Y. M. Li, G. H. Liu, X. R. Wang, J. M. Hu, S. Y. Liu, Angew. Chem., Int. Ed. 2016, 55, 1760; c) S. G. Chen, L. J. Yuan, Q. Q. Li, J. N. Li, X. L. Zhu, Y. G. Jiang, O. Sha, X. H. Yang, J. H. Xin, J. X. Wang, F. J. Stadler, P. Huang, Small 2016, 12, 3516.
- 7a) W. Li, K. Dong, J. S. Ren, X. G. Qu, Angew. Chem., Int. Ed. 2016, 55, 8049; b) F. Wang, W. W. Gao, S. Thamphiwatana, B. T. Luk, P. Angsantikul, Q. Z. Zhang, C. M. J. Hu, R. H. Fang, J. A. Copp, D. Pornpattananangkul, W. Y. Lu, L. F. Zhang, Adv. Mater. 2015, 27, 3437; c) P. Li, Y. F. Poon, W. Li, H. Y. Zhu, S. H. Yeap, Y. Cao, X. Qi, C. Zhou, M. Lamrani, R. W. Beuerman, E. T. Kang, Y. Mu, C. M. Li, M. W. Chang, S. S. Leong, M. B. Chan-Park, Nat. Mater. 2011, 10, 149; d) R. Yang, V. Sabharwal, O. S. Okonkwo, N. Shlykova, R. Tong, L. Y. Lin, W. Wang, S. Guo, J. J. Rosowski, S. I. Pelton, D. S. Kohane, Sci. Transl. Med. 2016, 8, 356ra120.
- 8C. M. Courtney, S. M. Goodman, J. A. McDaniel, N. E. Madinger, A. Chatterjee, P. Nagpal, Nat. Mater. 2016, 15, 529.
- 9a) P. Y. Yuan, X. Ding, Z. P. Guan, N. Gao, R. Ma, X.-F. Jiang, Y. Y. Yang, Q.-H. Xu, Adv. Healthcare Mater. 2015, 4, 674; b) D. F. Hu, H. Li, B. L. Wang, Z. Ye, W. X. Lei, F. Jia, Q. Jin, K. F. Ren, J. Ji, ACS Nano 2017, 11, 9330.
- 10a) X. Q. Huang, G. J. Chen, J. L. Pan, X. Chen, N. Huang, X. Wang, J. Liu, J. Mater. Chem. B 2016, 4, 6258; b) N. J. Hao, X. Chen, S. Jeon, M. D. Yan, Adv. Healthcare Mater. 2015, 4, 2797; c) B. Wang, M. Wang, A. Mikhailovsky, S. Wang, G. C. Bazan, Angew. Chem., Int. Ed. 2017, 56, 5031; d) G. B. Qi, D. Zhang, F. H. Liu, Z. Y. Qiao, H. Wang, Adv. Mater. 2017, 29, 1703461; e) M. Gao, Q. L. Hu, G. X. Feng, N. Tomczak, R. R. Liu, B. G. Xing, B. Z. Tang, B. Liu, Adv. Healthcare Mater. 2015, 4, 659; f) Y. Yang, L. Ma, C. Cheng, Y. Y. Deng, J. Huang, X. Fan, C. X. Nie, W. F. Zhao, C. S. Zhao, Adv. Funct. Mater. 2018, 28, 1705708; g) S. Mura, J. Nicolas, P. Couvreur, Nat. Mater. 2013, 12, 991; h) A. Tardy, J. C. Honore, J. Tran, D. Siri, V. Delplace, I. Bataille, D. Letourneur, J. Perrier, C. Nicoletti, M. Maresca, C. Lefay, D. Gigmes, J. Nicolas, Y. Guillaneuf, Angew. Chem., Int. Ed. 2017, 56, 16515; i) S. Zhu, X. Wang, Y. Yang, H. Bai, Q. Cui, H. Sun, L. Li, S. Wang, Chem. Mater. 2018, 30, 3244.
- 11a) A. Som, S. Vemparala, I. Ivanov, G. N. Tew, Biopolymers 2008, 90, 83; b) N. Wiradharma, U. Khoe, C. A. E. Hauser, S. V. Seow, S. G. Zhang, Y. Y. Yang, Biomaterials 2011, 32, 2204; c) A. W. Young, Z. G. Liu, C. H. Zhou, F. Totsingan, N. Jiwrajka, Z. S. Shi, N. R. Kallenbach, MedChemComm 2011, 2, 308.
- 12R. E. W. Hancock, H. G. Sahl, Nat. Biotechnol. 2006, 24, 1551.
- 13a) F. Nederberg, Y. Zhang, J. P. K. Tan, K. J. Xu, H. Y. Wang, C. Yang, S. J. Gao, X. D. Guo, K. Fukushima, L. J. Li, J. L. Hedrick, Y. Y. Yang, Nat. Chem. 2011, 3, 409; b) P. Li, C. Zhou, S. Rayatpisheh, K. Ye, Y. F. Poon, P. T. Hammond, H. Duan, M. B. Chan-Park, Adv. Mater. 2012, 24, 4130; c) M. Z. Wang, C. C. Zhou, J. Chen, Y. F. Xiao, J. Z. Du, Bioconjugate Chem. 2015, 26, 725; d) W. Chin, G. Zhong, Q. Pu, C. Yang, W. Lou, P. F. De Sessions, B. Periaswamy, A. Lee, Z. C. Liang, X. Ding, S. Gao, C. W. Chu, S. Bianco, C. Bao, Y. W. Tong, W. Fan, M. Wu, J. L. Hedrick, Y. Y. Yang, Nat. Commun. 2018, 9, 917.
- 14Y. W. Zhu, C. Xu, N. Zhang, X. K. Ding, B. R. Yu, F. J. Xu, Adv. Funct. Mater. 2018, 28, 1706709.
- 15a) L. M. Thoma, B. R. Boles, K. Kuroda, Biomacromolecules 2014, 15, 2933; b) J. P. R., N. Thuy-Khanh, S. Sivaprakash, W. E. H. H., B. Cyrille, Angew. Chem., Int. Ed. 2018, 57, 4559.
- 16a) X. L. Hu, J. M. Hu, J. Tian, Z. S. Ge, G. Y. Zhang, K. F. Luo, S. Y. Liu, J. Am. Chem. Soc. 2013, 135, 17617; b) X. L. Hu, G. H. Liu, Y. Li, X. R. Wang, S. Y. Liu, J. Am. Chem. Soc. 2015, 137, 362; c) X. L. Hu, S. D. Zhai, G. H. Liu, D. Xing, H. J. Liang, S. Y. Liu, Adv. Mater. 2018, 30, 1706307; d) X. L. Hu, S. Y. Liu, J. Controlled Release 2017, 259, e144; e) W. H. Wang, G. H. Liang, W. J. Zhang, D. Xing, X. L. Hu, Chem. Mater. 2018, 30, 3486; f) K. N. Zhu, G. H. Liu, J. M. Hu, S. Y. Liu, Biomacromolecules 2017, 18, 2571; g) J. J. Tan, Z. Y. Deng, G. H. Liu, J. M. Hu, S. Y. Liu, Biomaterials 2018, 178, 608; h) Y. Li, Y. Li, W. Ji, Z. Lu, L. Liu, Y. Shi, G. Ma, X. Zhang, J. Am. Chem. Soc. 2018, 140, 4164.
- 17a) L. M. McMurry, M. Oethinger, S. B. Levy, Nature 1998, 394, 531; b) R. J. Heath, C. O. Rock, Nature 2000, 406, 145.
- 18D. D. Yao, Y. J. Guo, S. G. Chen, J. N. Tang, Y. M. Chen, Polymer 2013, 54, 3485.
- 19I. Wiegand, K. Hilpert, R. E. W. Hancock, Nat. Protoc. 2008, 3, 163.
- 20a) Y. M. Li, X. L. Hu, S. D. Tian, Y. Li, G. Q. Zhang, G. Y. Zhang, S. Y. Liu, Biomaterials 2014, 35, 1618; b) M. Vijayakumar, K. Priya, F. T. Nancy, A. Noorlidah, A. B. A. Ahmed, Ind. Crops Prod. 2013, 41, 235; c) B. Gottenbos, D. W. Grijpma, H. C. van der Mei, J. Feijen, H. J. Busscher, J. Antimicrob. Chemother. 2001, 48, 7.
- 21Z. M. Al-Badri, A. Som, S. Lyon, C. F. Nelson, K. Nusslein, G. N. Tew, Biomacromolecules 2008, 9, 2805.
- 22a) X. D. Xu, Y. J. Cheng, J. Wu, H. Cheng, S. X. Cheng, R. X. Zhuo, X. Z. Zhang, Biomaterials 2016, 76, 238; b) Q. Pang, X. W. Zheng, Y. Luo, L. Ma, C. Y. Gao, J. Mater. Chem. B 2017, 5, 8975; c) P. Sun, D. Chen, H. P. Deng, N. Wang, P. Huang, X. Jin, X. Y. Zhu, Bioconjugate Chem. 2017, 28, 1470; d) X. D. Xu, P. E. Saw, W. Tao, Y. J. Li, X. Y. Ji, S. Bhasin, Y. L. Liu, D. Ayyash, J. Rasmussen, M. Huo, J. J. Shi, O. C. Farokhzad, Adv. Mater. 2017, 29, 1700141; e) Y. Y. Yuan, J. Liu, B. Liu, Angew. Chem., Int. Ed. 2014, 53, 7163.
- 23L. Masip, K. Veeravalli, G. Georgioui, Antioxid. Redox Signal. 2006, 8, 753.
- 24S. B. delCardayre, K. P. Stock, G. L. Newton, R. C. Fahey, J. E. Davies, J. Biol. Chem. 1998, 273, 5744.
- 25C. Sanson, C. Schatz, J. F. Le Meins, A. Brulet, A. Soum, S. Lecommandoux, Langmuir 2010, 26, 2751.
- 26A. F. Radovic-Moreno, T. K. Lu, V. A. Puscasu, C. J. Yoon, R. Langer, O. C. Farokhzad, ACS Nano 2012, 6, 4279.
- 27a) M. F. Mohamed, M. N. Seleem, Drug Des., Dev. Ther. 2014, 8, 1979; b) X. J. Fu, Y. Q. Zhu, Y. B. Peng, Y. S. Chen, Y. P. Hu, H. X. Lu, W. R. Yu, Y. Fang, J. Z. Du, M. Yao, J. Photochem. Photobiol., B 2014, 136, 72.
- 28a) L. L. Xu, C. He, L. W. Hui, Y. T. Xie, J. M. Li, W. D. He, L. H. Yang, ACS Appl. Mater. Interfaces 2015, 7, 27602;
b) P. P. Pillai, B. Kowalczyk, K. Kandere-Grzybowska, M. Borkowska, B. A. Grzybowski, Angew. Chem. 2016, 128, 8752.
10.1002/ange.201602965 Google Scholar
- 29I. Sovadinova, E. F. Palermo, R. Huang, L. M. Thoma, K. Kuroda, Biomacromolecules 2011, 12, 260.
- 30Y. M. Li, H. S. Yu, Y. F. Qian, J. M. Hu, S. Y. Liu, Adv. Mater. 2014, 26, 6734.
- 31C. L. Zhu, Q. O. Yang, L. B. Liu, F. T. Lv, S. Y. Li, G. Q. Yang, S. Wang, Adv. Mater. 2011, 23, 4805.
- 32Q. Y. Li, Y. H. Wu, H. G. Lu, X. S. Wu, S. Chen, N. Song, Y. W. Yang, H. Gao, ACS Appl. Mater. Interfaces 2017, 9, 10180.
- 33J. Y. Gao, M. Z. Wang, F. Y. K. Wang, J. Z. Du, Biomacromolecules 2016, 17, 2080.
- 34D. J. Novo, N. G. Perlmutter, R. H. Hunt, H. M. Shapiro, Antimicrob. Agents Chemother. 2000, 44, 827.
- 35M. Wenzel, A. I. Chiriac, A. Otto, D. Zweytick, C. May, C. Schumacher, R. Gust, H. B. Albada, M. Penkova, U. Kramer, R. Erdmann, N. Metzler-Nolte, S. K. Straus, E. Bremer, D. Becher, H. Brotz-Oesterhelt, H. G. Sahl, J. E. Bandow, Proc. Natl. Acad. Sci. USA 2014, 111, E1409.
- 36Y. Liu, H. C. v. d. Mei, B. Zhao, Y. Zhai, T. Cheng, Y. Li, Z. Zhang, H. J. Busscher, Y. Ren, L. Shi, Adv. Funct. Mater. 2017, 27, 1701974.
- 37L. Tao, J. Q. Liu, B. H. Tan, T. P. Davis, Macromolecules 2009, 42, 4960.
- 38a) R. M. P. da Silva, D. van der Zwaag, L. Albertazzi, S. S. Lee, E. W. Meijer, S. I. Stupp, Nat. Commun. 2016, 7, 11561; b) Y. Shu, H. R. Yin, M. Rajabi, H. Li, M. Vieweger, S. J. Guo, D. Shu, P. X. Guo, J. Controlled Release 2018, 276, 17.
- 39Z. X. Voo, M. Khan, Q. X. Xu, K. Narayanan, B. W. J. Ng, R. B. Ahmad, J. L. Hedrick, Y. Y. Yang, Polym. Chem. 2016, 7, 656.
- 40A. E. Krausz, B. L. Adler, V. Cabral, M. Navati, J. Doerner, R. A. Charafeddine, D. Chandra, H. Y. Liang, L. Gunther, A. Clendaniel, S. Harper, J. M. Friedman, J. D. Nosanchuk, A. J. Friedman, Nanomed.: Nanotechnol., Biol. Med. 2015, 11, 195.