A Phase-Separation Route to Synthesize Porous CNTs with Excellent Stability for Na+ Storage
Zhi Chen
Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorTaihong Wang
Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorCorresponding Author
Ming Zhang
Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082 China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Guozhong Cao
Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195 USA
E-mail: [email protected], [email protected]Search for more papers by this authorZhi Chen
Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorTaihong Wang
Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082 China
Search for more papers by this authorCorresponding Author
Ming Zhang
Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082 China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Guozhong Cao
Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195 USA
E-mail: [email protected], [email protected]Search for more papers by this authorAbstract
Porous carbon nanotubes (CNTs) are obtained by removing MoO2 nanoparticles from MoO2@C core@shell nanofibers which are synthesized by phase-segregation via a single-needle electrospinning method. The specific surface area of porous CNTs is 502.9 m2 g−1, and many oxygen-containing functional groups (COH, CO) are present. As anodes for sodium-ion batteries, the porous CNT electrode displays excellent rate performance and cycling stability (110 mA h g−1 after 1200 cycles at 5 A g−1). Those high properties can be attributed to the porous structure and surface modification to steadily store Na+ with high capacity. The work provides a facile and broadly applicable way to fabricate the porous CNTs and their composites for batteries, catalysts, and fuel cells.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
smll201604045-sup-0001-S1.pdf931 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Bianco, K. Kostarelos, M. Prato, Curr. Opin. Chem. Biol. 2005, 9, 674.
- 2F. Hossain, O. J. Perales-Perez, S. Hwang, F. Román, Sci. Total Environ. 2014, 466, 1047.
- 3B. Liu, X. Li, B. Li, B. Xu, Y. Zhao, Nano Lett. 2009, 9, 1386.
- 4L. Dai, D. W. Chang, J.-B. Baek, W. Lu, Small 2012, 8, 1130.
- 5C. Zhang, W. Lv, Y. Tao, Q.-H. Yang, Energy Environ. Sci. 2015, 8, 1390.
- 6D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai, Y. Chen, Nat. Nanotechnol. 2014, 9, 555.
- 7Z.-L. Wang, D. Xu, H.-G. Wang, Z. Wu, X.-B. Zhang ACS Nano 2013, 7, 2422.
- 8H.-X. Zhong, J. Wang, Y.-W. Zhang, W.-L. Xu, W.Xing, D. Xu, Y.-F. Zhang, X.-B.Zhang, Angew. Chem. Int. Ed. 2014, 53, 14235.
- 9S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B. Yang, Angew. Chem. Int. Ed. 2013, 52, 3953.
- 10H. Hou, C. E. Banks, M. Jing , Y. Zhang, X. Ji, Adv. Mater. 2015, 27, 7861.
- 11S. Wang, S. Yuan, Y.-B. Yin, Y.-H. Zhu, X.-B. Zhang, J.-M. Yan, Part. Part. Syst. Charact. 2016, 33, 493.
- 12R. Alcantara, J. M. Jimenez-Mateos, P. Lavela, J. L. Tirado, Electrochem. Commun. 2001, 3, 639.
- 13R. Alcantara, F. J. Femandez Madrigal , P. Lavela , J. L. Tirado, J. M. Jimenez Mateos, C. Gomez de Salazar, R. Stoyanova, E. Zhecheva, Carbon 2000, 38, 1031.
- 14S. Yuan, S. Wang, L. Li, Y.-H. Zhu, X.-B. Zhang, J.-M. Yan , ACS Appl. Mater. Interfaces 2016, 8, 9178.
- 15S. Yuan, X.-L. Huang, D.-L. Ma, H.-G. Wang, F.-Z. Meng, X. -B. Zhang, Adv. Mater. 2014, 26, 2273.
- 16Y.-X. Wang, S.-L. Chou, H.-K. Liu, S.-X. Dou, Carbon 2013, 57, 202.
- 17W. Luo, C. Bommier, Z. Jian, X. Li, R.Carter, S.Vail, Y. Lu, J.-J. Lee, X. Ji, ACS Appl. Mater. Interfaces 2015, 7, 2626.
- 18D. Stevens, J. Dahn, J. Electrochem. Soc. 2000, 147, 1271.
- 19R. Alcantara, P. Lavela, G. F. Ortiz, J. L. Tirado, Electrochem. Solid-State Lett. 2005, 8, A222.
- 20X. Zhou, Y.-G. Guo, ChemElectroChem 2014, 1, 83.
- 21Y. Cao, L. Xiao, M. L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L. V. Saraf, Z. Yang, J. Liu, Nano Lett. 2012, 12, 3783.
- 22D. Stevens, J. Dahn, J. Electrochem. Soc. 2001, 148, A803.
- 23S. Yang, X. Feng, L. Zhi, Q. Cao, J. Maier, K. Mullen, Adv. Mater. 2010, 22, 838.
- 24Y. Yan, Y.-X. Yin, Y.-G. Guo, L.-J. Wan, Adv. Energy Mater. 2014, 4, 1301584.
- 25J. Maier, Nat. Mater. 2005, 4, 805.
- 26L. L. Zhang, X. S. Zhao,Chem. Soc. Rev. 2009, 38, 2520.
- 27S. W. Lee, J. Kim , S. Chen, P. T. Hammond, Y. Shao-Horn, ACS Nano 2010, 4, 3889.
- 28F. Valentini, A. Amine, S. Orlanducci, M. L. Terranova, G. Palleschi, Anal. Chem. 2003, 75, 5413.
- 29X. Tang, , B. Zhang, C. Xiao, H. Zhou, X. Wang, D. He, Sens. Actuators B 2016, 222, 232.
- 30Z. Wen, Q. Wang, J. Li, Adv. Funct. Mater. 2008, 18, 959.
- 31J. S. Suh, J. S. Lee, Appl. Phys. Lett. 1999, 75, 2047.
- 32M. Hu, J. Reboul, S. Furukawa, L. Radhakrishnan, Y. Zhang, P. Srinivasu, H. Iwai, H. Wang, Y.Nemoto, N.Suzuki, S.Kitagawa, Y.Yamauchi, Chem. Commun. 2011, 47, 8124.
- 33Y. Zhai, Y. Dou, X. Liu, S. S. Park, C.-S. Ha, D.Zhao, Carbon 2011, 49, 545.
- 34I. Lahiri, S.-M. Oh, J. Y. Hwang, C. Kang, M. Choi, H. Jeon, R. Banerjee, Y.-K. Sun, W.Choi, J. Mater. Chem. 2011, 21, 13621.
- 35X. Li, J. Liu, Y. Zhang, Y. Li, H.Liu, X. Meng, J. Yang, D. Geng, D. Wang, R.Li, X. Sun, J. Power Sources 2012, 197, 238.
- 36Z. Shen, Y. Hu, Y. Chen, R. Chen, X. He, L. Geng, X. Zhang, K. Wu, Small 2016, 12, 5269.
- 37Z. Chen, T. Yang, H. Shi, T. Wang, M. Zhang, G.Cao, Adv. Mater. Interfaces 2017, 4, 1600816.
- 38J. Jin, Z.-Q. Shi, C.-Y. Wang, Electrochim. Acta 2014, 141, 302.
- 39P. Thomas, D. Billaud,Electrochim. Acta 2002, 47, 3303.
- 40H. Zhang, G. Zhang, Z. Li, K. Qu, L. Wang, W. Zeng, Q. Zhang, H. Duan, J. Mater. Chem. A 2016, 4, 10585.
- 41L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai,Nature 2009, 458, 877.
- 42L. Wang, C. Yang, S. Dou, S. Wang, J. Zhang, X. Gao, J. Ma, Y.Yu, Electrochim. Acta 2016, 219, 592.
- 43K. A. Worsley, I. Kalinina, E. Bekyarova, R. C. Haddon, J. Am. Chem. Soc. 2009, 131, 18153.
- 44F. Zhou, S. Xin, H.-W. Liang, L.-T. Song, S.-H. Yu, Angew. Chem. Int. Ed. 2014, 53, 11552.
- 45T. Zheng, J. S. Xue, J. R. Dahn, Chem. Mater. 1996, 8, 389.
- 46K. Tang, R. J. White, X. Mu, M.-M. Titirici, P. A. van Aken, J. Maier,ChemSusChem 2012, 5, 400.
- 47J. Ding, H. Wang, Z. Li, A. Kohandehghan, K. Cui, Z. Xu, B.Zahiri, X.Tan, E. M.Lotfabad, B. C. Olsen, D. Mitlin, ACS Nano 2013, 7, 11004.
- 48K. Tang, L. Fu, R. J. White, L. Yu, M.-M. Titirici, M. Antonietti, J. Maier, Adv. Energy Mater. 2012, 2, 873.
- 49C. Bommier, W. Luo, W.-Y. Gao, A. Greaney, S. Ma, X. Ji, Carbon 2014, 76, 165.
- 50T. Chen, Y. Liu, L. Pan, T. Lu, Y. Yao, Z. Sun, D. H.Chua, Q.Chen, J. Mater. Chem. A 2014, 2, 4117.
- 51L. Fu, K. Tang, K. Song, P. A. van Aken, Y.Yu, J.Maier, Nanoscale 2014, 6, 1384.
- 52Y. Liu, F. Fan, J. Wang, Y. Liu, H. Chen, K. L. Jungjohann, Y. Xu, Y. Zhu, D.Bigio, T.Zhu, C.Wang, Nano Lett. 2014, 14, 3445.
- 53Z. Wang, L. Qie, L. Yuan, W. Zhang, X. Hu, Y. Huang, Carbon 2013, 55, 328.
- 54Y. Shao, J. Xiao, W. Wang, M. Engelhard, X.Chen, Z. Nie, M. Gu, L. V. Saraf, G. Exarhos, J.-G. Zhang, J.Liu, Nano Lett. 2013, 13, 3909.
- 55Q. Fan, W. Zhang, J. Duan, K. Hong, L. Xue, Y. Huang, Electrochim. Acta 2015, 174, 970.
- 56D. Li, L. Zhang, H. Chen, L.-X.Ding, S. Wang, H.Wang, Chem. Commun. 2015, 51, 16045.
- 57D. Wang, K. Wu, L. Shao, M. Shui, R. Ma, X. Lin, N. Long, Y. Ren, J. Shu, Electrochim. Acta 2014, 120, 110.