Somatostatin Receptor-Mediated Tumor-Targeting Nanocarriers Based on Octreotide-PEG Conjugated Nanographene Oxide for Combined Chemo and Photothermal Therapy
Xuyuan Zhang
State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, 210009 China
Search for more papers by this authorChongyin Yang
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742 USA
Search for more papers by this authorCorresponding Author
Jianping Zhou
State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, 210009 China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Meirong Huo
State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, 210009 China
E-mail: [email protected], [email protected]Search for more papers by this authorXuyuan Zhang
State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, 210009 China
Search for more papers by this authorChongyin Yang
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742 USA
Search for more papers by this authorCorresponding Author
Jianping Zhou
State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, 210009 China
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Meirong Huo
State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, No. 24 Tong Jia Xiang, Nanjing, 210009 China
E-mail: [email protected], [email protected]Search for more papers by this authorAbstract
Nano-sized in vivo active targeting drug delivery systems have been developed to a high anti-tumor efficacy strategy against certain cancer-cells-specific. Graphene based nanocarriers with unique physical and chemical properties have shown significant potentials in this aspect. Here, octreotide (OCT), an efficient biotarget molecule, is conjugated to PEGylated nanographene oxide (NGO) drug carriers for the first time. The obtained NGO-PEG-OCT complex shows low toxicity and excellent stability in vivo and is able to achieve somatostatin receptor-mediated tumor-specific targeting delivery. Owing to the high loading efficiency and accurate targeting delivery of anti-cancer drug doxorubicin (DOX), our DOX loaded NGO-PEG-OCT complex offers a remarkably improved cancer-cell-specific cellular uptake, chemo-cytotoxicity, and decreased systemic toxicity compared to free DOX or NGO-PEG. More importantly, due to its strong near-infrared absorption, the NGO-PEG-OCT complex further enhances efficient photothermal ablation of tumors, delivering combined chemo and photothermal therapeutic effect against cancer cells.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
smll201600618-sup-0001-S1.pdf6.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. W. Tibbitt, J. E. Dahlman, R. Langer, J. Am. Chem. Soc. 2016, 138, 704.
- 2J. W. Wojtkowiak, D. Verduzco, K. J. Schramm, R. J. Gillies, Mol. Pharmaceutics 2011, 8, 2032.
- 3E. Hennequin, C. Delvincourt, C. Pourny, J.-C. Jardillier, Breast Cancer Res. Tr. 26, 267.
- 4R. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai, T. Okano, Nature 1995, 374, 240.
- 5A. P. Griset, J. Walpole, R. Liu, A. Gaffey, Y. L. Colson, M. W. Grinstaff, J. Am. Chem. Soc. 2009, 131, 2469.
- 6R. Tong, H. D. Hemmati, R. Langer, D. S. Kohane, J. Am. Chem. Soc. 2012, 134, 8848.
- 7H. Dong, L. Ding, F. Yan, H. Ji, H. Ju, Biomaterials 2011, 32, 3875.
- 8Z. Liu, J. T. Robinson, X. Sun, H. Dai, J. Am. Chem. Soc. 2008, 130, 10876.
- 9X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano Res. 2008, 1, 203.
- 10L. Feng, S. Zhang, Z. Liu, Nanoscale 2011, 3, 1252.
- 11B. Tian, C. Wang, S. Zhang, L. Feng, Z. Liu, ACS Nano 2011, 5, 7000.
- 12H. Hong, K. Yang, Y. Zhang, J. W. Engle, L. Feng, Y. Yang, T. R. Nayak, S. Goel, J. Bean, C. P. Theuer, T. E. Barnhart, Z. Liu, W. Cai, ACS Nano 2012, 6, 2361.
- 13K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, Z. Liu, Adv. Mater. 2012, 24, 1868.
- 14S. Liu, T. H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, Y. Chen, ACS Nano 2011, 5, 6971.
- 15K. Yang, L. Feng, X. Shi, Z. Liu, Chem. Soc. Rev. 2013, 42, 530.
- 16Z. Zhang, J. Wang, C. Chen, Adv. Mater. 2013, 25, 3869.
- 17L. Cheng, C. Wang, L. Feng, K. Yang, Z. Liu, Chem. Rev. 2014, 114, 10869.
- 18L. Feng, X. Yang, X. Shi, X. Tan, R. Peng, J. Wang, Z. Liu, Small 2013, 9, 1989.
- 19X. Shi, H. Gong, Y. Li, C. Wang, L. Cheng, Z. Liu, Biomaterials 2013, 34, 4786.
- 20K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, Z. Liu, Nano Lett. 2010, 10, 3318.
- 21L. Feng, K. Li, X. Shi, M. Gao, J. Liu, Z. Liu, Adv. Healthcare Mater. 2014, 3, 1261.
- 22H. Wen, C. Dong, H. Dong, A. Shen, W. Xia, X. Cai, Y. Song, X. Li, Y. Li, D. Shi, Small 2012, 8, 760.
- 23P. Huang, C. Xu, J. Lin, C. Wang, X. Wang, C. Zhang, X. Zhou, S. Guo, D. Cui, Theranostics 2011, 1, 240.
- 24W. Miao, G. Shim, C. M. Kang, S. Lee, Y. S. Choe, H.-G. Choi, Y.-K. Oh, Biomaterials 2013, 34, 9638.
- 25H. Wu, H. Shi, Y. Wang, X. Jia, C. Tang, J. Zhang, S. Yang, Carbon 2014, 69, 379.
- 26S. Shi, K. Yang, H. Hong, F. Chen, H. F. Valdovinos, S. Goel, T. E. Barnhart, Z. Liu, W. Cai, Biomaterials 2015, 39, 39.
- 27G. Liu, H. Shen, J. Mao, L. Zhang, Z. Jiang, T. Sun, Q. Lan, Z. Zhang, ACS Appl. Mater. Interfaces 2013, 5, 6909.
- 28Y. C. Patel, Front. Neuroendocrinol. 1999, 20, 157.
- 29K. B. Ain, K. D. Taylor, S. Tofiq, G. Venkataraman, J. Clin. Endocrinol. Metab. 1997, 82, 1857.
- 30I. Virgolini, T. Traub, C. Novotny, M. Leimer, B. Fuger, S. R. Li, P. Patri, T. Pangerl, P. Angelberger, M. Raderer, G. Burggasser, F. Andreae, A. Kurtaran, R. Dudczak, Curr. Pharm. Des. 2002, 8, 1781.
- 31H. Reynaert, K. Rombouts, A. Vandermonde, D. Urbain, U. Kumar, P. Bioulac-Sage, M. Pinzani, J. Rosenbaum, A. Geerts, Gut 2004, 53, 1180.
- 32R. E. Weiner, M. L. Thakur, Biodrugs 2005, 19, 145.
- 33I. Virgolini, T. Traub, C. Novotny, M. Leimer, B. Fuger, S. Li, P. Patri, T. Pangerl, P. Angelberger, M. Raderer, Curr. Pharm. Des. 2002, 8, 1781.
- 34M. Appetecchia, R. Baldelli, J. Exp. Clin. Cancer Res. 2010, 29, 1.
- 35G. Kaltsas, D. Papadogias, P. Makras, A. Grossman, Endocr.-Relat. Cancer 2005, 12, 683.
- 36H. L. Watt, G. Kharmate, U. Kumar, Mol. Cell. Endocrinol. 2008, 286, 251.
- 37L.-C. Sun, D. H Coy, Curr. Drug Delivery 2011, 8, 2.
- 38Y. Zhang, X. Wang, J. Wang, X. Zhang, Q. Zhang, Pharm. Res. 2011, 28, 1167.
- 39M. Huo, A. Zou, C. Yao, Y. Zhang, J. Zhou, J. Wang, Q. Zhu, J. Li, Q. Zhang, Biomaterials 2012, 33, 6393.
- 40H.-J. Shin, K. K. Kim, A. Benayad, S.-M. Yoon, H. K. Park, I.-S. Jung, M. H. Jin, H.-K. Jeong, J. M. Kim, J.-Y. Choi, Y. H. Lee, Adv. Funct. Mater. 2009, 19, 1987.
- 41D. Wan, C. Yang, T. Lin, Y. Tang, M. Zhou, Y. Zhong, F. Huang, J. Lin, ACS Nano 2012, 6, 9068.
- 42Z. Bo, X. Shuai, S. Mao, H. Yang, J. Qian, J. Chen, J. Yan, K. Cen, Sci. Rep. 2014, 4, 4684.
- 43K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud'homme, I. A. Aksay, R. Car, Nano Lett. 2008, 8, 36.
- 44H. Wang, J. T. Robinson, X. Li, H. Dai, J. Am. Chem. Soc. 2009, 131, 9910.
- 45S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558.
- 46S. Bose, T. Kuila, A. K. Mishra, N. H. Kim, J. H. Lee, J. Mater. Chem. 2012, 22, 9696.
- 47D. Li, M. B. Muller, S. Gilje, R. B. Kaner, G. G. Wallace, Nat. Nanotechnol. 2008, 3, 101.
- 48X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, F. Zhang, Adv. Mater. 2008, 20, 4490.
- 49C. Hontoria-Lucas, A. J. López-Peinado, J. d. D. López-González, M. L. Rojas-Cervantes, R. M. Martín-Aranda, Carbon 1995, 33, 1585.
- 50T. Szabó, O. Berkesi, I. Dékány, Carbon 2005, 43, 3186.
- 51H. Zhang, D. Hines, D. L. Akins, Dalton Trans. 2014, 43, 2670.
- 52Z. Ji, G. Zhu, X. Shen, H. Zhou, C. Wu, M. Wang, New J. Chem. 2012, 36, 1774.
- 53X. Yang, X. Zhang, Y. Ma, Y. Huang, Y. Wang, Y. Chen, J. Mater. Chem. 2009, 19, 2710.
- 54S. Stankovich, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Carbon 2006, 44, 3342.
- 55H. Kim, D. Lee, J. Kim, T.-i. Kim, W. J. Kim, ACS Nano 2013, 7, 6735.
- 56Z. Liu, X. Sun, N. Nakayama-Ratchford, H. Dai, ACS Nano 2007, 1, 50.
- 57R. J. Chen, Y. Zhang, D. Wang, H. Dai, J. Am. Chem. Soc. 2001, 123, 3838.
- 58J. Kim, L. J. Cote, F. Kim, J. Huang, J. Am. Chem. Soc. 2010, 132, 260.
- 59K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang, Z. Liu, Biomaterials 2012, 33, 2206.
- 60K.-H. Liao, Y.-S. Lin, C. W. Macosko, C. L. Haynes, ACS Appl. Mater. Interfaces 2011, 3, 2607.
- 61Y.-K. Kim, M.-H. Kim, D.-H. Min, Chem. Commun. 2011, 47, 3195.
- 62C. Cheng, S. Nie, S. Li, H. Peng, H. Yang, L. Ma, S. Sun, C. Zhao, J. Mater. Chem. B 2013, 1, 265.
- 63C.-M. Huang, Y.-T. Wu, S.-T. Chen, Chem. Biol. 7, 453.
- 64Y. Zhang, H. Zhang, X. Wang, J. Wang, X. Zhang, Q. Zhang, Biomaterials 2012, 33, 679.
- 65J.-H. Yuan, Y. Chen, H.-X. Zha, L.-J. Song, C.-Y. Li, J.-Q. Li, X.-H. Xia, Colloids Surf. B: Biointerfaces 2010, 76, 145.
- 66X. Yang, J. J. Grailer, I. J. Rowland, A. Javadi, S. A. Hurley, D. A. Steeber, S. Gong, Biomaterials 2010, 31, 9065.
- 67W. Miao, G. Shim, S. Lee, S. Lee, Y. S. Choe, Y.-K. Oh, Biomaterials 2013, 34, 3402.