Tunable Assembly of Gold Nanoparticles on Nanopatterned Poly(ethylene glycol) Brushes
M. Serdar Onses
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, WI 53706, USA
Search for more papers by this authorCorresponding Author
Paul F. Nealey
Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Jones 217, Chicago, IL 60637, USA
Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Jones 217, Chicago, IL 60637, USA.Search for more papers by this authorM. Serdar Onses
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, WI 53706, USA
Search for more papers by this authorCorresponding Author
Paul F. Nealey
Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Jones 217, Chicago, IL 60637, USA
Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Jones 217, Chicago, IL 60637, USA.Search for more papers by this authorAbstract
The organization of metallic nanoparticles (NPs) into ordered arrays on nanopatterned surfaces is an enabling process to fabricate devices and study the properties of the particles. Tailoring the interaction between NPs and nanopatterns is a necessity to gain a high level of control in this process. Here, nanopatterned poly(ethylene glycol) (PEG) brushes are presented as a platform for the organization of Au NPs on surfaces. The binding of citrate-stabilized Au NPs to the PEG brushes depends on the size of the particles and molecular weight of the brushes: the density of NPs immobilized on the nanopatterns of PEG brushes increases with decreasing the diameter of the particles and increasing the chain length of the brushes. The key aspect of the process is to pattern PEG brushes with high resolution and chemical contrast to provide controllable and specific interaction between Au NPs and nanopatterns at a single particle resolution. The modulation of the number (0–4) of Au NPs (e.g., 30 nm) per patterned feature with a high level of accuracy and the generation of patterned heterostructures that consist of two different sizes (e.g., 40 and 20 nm) of particles constitute two examples showing the capabilities of the presented platform.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
smll_201300462_sm_suppl.pdf1.1 MB | suppl |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 M. Grzelczak, J. Vermant, E. M. Furst, L. M. Liz-Marzan, ACS Nano 2010, 4, 3591.
- 2 K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, J. Phys. Chem. B 2003, 107, 668.
- 3 L. M. Liz-Marzan, Langmuir 2006, 22, 32.
- 4 S. J. Tan, M. J. Campolongo, D. Luo, W. L. Cheng, Nat. Nanotechnol. 2011, 6, 268.
- 5 P. K. Jain, W. Y. Huang, M. A. El-Sayed, Nano Lett. 2007, 7, 2080.
- 6 A. J. Pasquale, B. M. Reinhard, L. Dal Negro, ACS Nano 2011, 5, 6578.
- 7 N. Liu, M. L. Tang, M. Hentschel, H. Giessen, A. P. Alivisatos, Nat. Mater. 2011, 10, 631.
- 8 B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. Dal Negro, B. M. Reinhard, ACS Nano 2009, 3, 1190.
- 9 S. S. Acimovic, M. P. Kreuzer, M. U. Gonzalez, R. Quidant, ACS Nano 2009, 3, 1231.
- 10 H. A. Atwater, A. Polman, Nat. Mater. 2010, 9, 205.
- 11 S. Linic, P. Christopher, D. B. Ingram, Nat. Mater. 2011, 10, 911.
- 12 Y. N. Xia, Y. J. Xiong, B. Lim, S. E. Skrabalak, Angew. Chem. Int. Ed. 2009, 48, 60.
- 13 N. J. Halas, Nano Lett. 2010, 10, 3816.
- 14 Y. Cui, M. T. Bjork, J. A. Liddle, C. Sonnichsen, B. Boussert, A. P. Alivisatos, Nano Lett. 2004, 4, 1093.
- 15 T. Kraus, L. Malaquin, H. Schmid, W. Riess, N. D. Spencer, H. Wolf, Nat. Nanotechnol. 2007, 2, 570.
- 16 J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, F. Capasso, Science 2010, 328, 1135.
- 17 Z. C. Liu, H. Y. Huang, T. B. He, Small 2013, 9, 505.
- 18 S. H. Sung, H. Yoon, J. Lim, K. Char, Small 2012, 8, 826.
- 19 J. H. Liao, X. X. Li, Y. Wang, C. Y. Zhang, J. L. Sun, C. Duan, Q. Chen, L. M. Peng, Small 2012, 8, 991.
- 20 M. S. Onses, C. J. Thode, C. C. Liu, S. X. Ji, P. L. Cook, F. J. Himpsel, P. F. Nealey, Adv. Funct. Mater. 2011, 21, 3074.
- 21 L. C. Ma, R. Subramanian, H. W. Huang, V. Ray, C. U. Kim, S. J. Koh, Nano Lett. 2007, 7, 439.
- 22 B. Yan, S. V. Boriskina, B. M. Reinhard, J. Phys. Chem. C 2011, 115, 24437.
- 23 L. Jiang, Y. H. Sun, C. Nowak, A. Kibrom, C. J. Zou, J. Ma, H. Fuchs, S. Z. Li, L. F. Chi, X. D. Chen, ACS Nano 2011, 5, 8288.
- 24 L. Jiang, W. C. Wang, H. Fuchs, L. F. Chi, Small 2009, 5, 2819.
- 25 R. R. Bhat, J. Genzer, B. N. Chaney, H. W. Sugg, A. Liebmann-Vinson, Nanotechnology 2003, 14, 1145.
- 26 I. Luzinov, S. Minko, V. Tsukruk, Soft Matter 2008, 4, 714.
- 27 J. U. Kim, B. O'Shaughnessy, Phys. Rev. Lett. 2002, 89, 238301.
- 28 R. R. Bhat, M. R. Tomlinson, J. Genzer, Macromol. Rapid Comm. 2004, 25, 270.
- 29 M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Nat. Mater. 2010, 9, 101.
- 30 S. V. Orski, K. H. Fries, S. K. Sontag, J. Locklin, J. Mater. Chem. 2011, 21, 14135.
- 31 H. J. Chung, J. Kim, K. Ohno, R. J. Composto, ACS Macro Lett. 2012, 1, 252.
- 32 S. Diamanti, S. Arifuzzaman, J. Genzer, R. A. Vaia, ACS Nano 2009, 3, 807.
- 33 M. S. Onses, C. C. Liu, C. J. Thode, P. F. Nealey, Langmuir 2012, 28, 7299.
- 34 C. C. Liu, E. Han, M. S. Onses, C. J. Thode, S. X. Ji, P. Gopalan, P. F. Nealey, Macromolecules 2011, 44, 1876.
- 35 L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, N. J. Halas, ACS Nano 2010, 4, 819.
- 36 L. Longenberger, G. Mills, G. Chow, K. Gonsalves, Nanotechnology 1996, 622, 128.
- 37 L. Longenberger, G. Mills, J. Phys. Chem. 1995, 99, 475
- 38 T. Sakai, P. Alexandridis, J. Phys. Chem. B 2005, 109, 7766.
- 39 B. J. Elliott, W. B. Willis, C. N. Bowman, Macromolecules 1999, 32, 3201.
- 40 F. Q. Fan, K. J. Stebe, Langmuir 2004, 20, 3062.
- 41 D. Nepal, M. S. Onses, K. Park, M. Jespersen, C. J. Thode, P. F. Nealey, R. A. Vaia, ACS Nano 2012, 6, 5693.
- 42 P. Manandhar, E. A. Akhadov, C. Tracy, S. T. Picraux, Nano Lett. 2010, 10, 2126.
- 43 J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, N. J. Halas, Nano Lett. 2008, 8, 1212.
- 44 P. Nordlander, C. Oubre, E. Prodan, K. Li, M. I. Stockman, Nano Lett. 2004, 4, 899.