Tracking and load sway reduction for double-pendulum rotary cranes using adaptive nonlinear control approach
Corresponding Author
Huimin Ouyang
College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, China
Huimin Ouyang, College of Electrical Engineering and Control Science, Nanjing Tech University, No. 30, Puzhu Road(s), Nanjing 211816, China.
Email: [email protected]
Search for more papers by this authorXiang Xu
College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, China
Search for more papers by this authorGuangming Zhang
College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, China
Search for more papers by this authorCorresponding Author
Huimin Ouyang
College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, China
Huimin Ouyang, College of Electrical Engineering and Control Science, Nanjing Tech University, No. 30, Puzhu Road(s), Nanjing 211816, China.
Email: [email protected]
Search for more papers by this authorXiang Xu
College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, China
Search for more papers by this authorGuangming Zhang
College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, China
Search for more papers by this authorSummary
Because of the existence of rotational boom motion, the load sway characteristics is more complex. In particular, when the sway presents double-pendulum phenomenon, the design of the controller is more challenging. Furthermore, the uncertain parameters and external disturbances in crane system make it difficult for traditional control methods to obtain satisfactory control performance. Hence, this paper presents an adaptive nonlinear controller based on the dynamic model of double-pendulum rotary crane. Unlike a traditional method, the proposed one does not need to linearize the crane system for controller design; therefore, the control performance can be guaranteed even if the system states are far away from the equilibrium point. By using Lyapunov technique and LaSalle's invariance theorem, it is strictly proved that the whole control system is asymptotically stable at the equilibrium point. The effectiveness of the presented controller is demonstrated via comparative simulations.
REFERENCES
- 1Ramli L, Mohamed Z, Abdullahi AM, Jaafar HI, Lazim IM. Control strategies for crane systems: a comprehensive review. Mech Syst Signal Process. 2017; 95: 1-23.
- 2Maghsoudi MJ, Ramli L, Sudin S, Mohamed Z, Husain AR, Wahid H. Improved unity magnitude input shaping scheme for sway control of an underactuated 3D overhead crane with hoisting. Mech Syst Signal Process. 2019; 123: 466-482.
- 3Ramli L, Mohamed Z, Jaafar HI. A neural network-based input shaping for swing suppression of an overhead crane under payload hoisting and mass variations. Mech Syst Signal Process. 2018; 107: 484-501.
- 4Maghsoudi MJ, Mohamed Z, Husain AR, Tokhi MO. An optimal performance control scheme for a 3D crane. Mech Syst Signal Process. 2016; 66-67: 756-768.
- 5Singhose W, Vaughan J. Reducing vibration by digital filtering and input shaping. IEEE Trans Control Syst Technol. 2011; 19(6): 1410-1420.
- 6Singhose W, Eloundou R, Lawrence J. Command generation for flexible systems by input shaping and command smoothing. J Guid Control Dyn. 2010; 33(6): 1697-1707.
- 7Chen H, Fang Y, Sun N. A swing constrained time-optimal trajectory planning strategy for double pendulum crane systems. Nonlinear Dynamics. 2017; 89(2): 1513-1524.
- 8Yang T, Sun N, Chen H, Fang Y. Motion trajectory-based transportation control for 3-D boom cranes: analysis, design, and experiments. IEEE Trans Ind Electron. 2019; 66(5): 3636-3646.
- 9Smoczek J, Szpytko J. Particle swarm optimization-based multivariable generalized predictive control for an overhead crane. IEEE/ASME Trans Mechatron. 2017; 22(1): 258-268.
- 10Sun N, Fang Y. An efficient online trajectory generating method for underactuated crane systems. Int J Robust Nonlinear Control. 2014; 24(11): 1653-1663.
- 11Uchiyama N, Ouyang H, Sano S. Simple rotary crane dynamics modeling and open-loop control for residual load sway suppression by only horizontal boom motion. Mechatronics. 2013; 23(8): 1223-1236.
- 12Wu Z, Xia X, Zhu B. Model predictive control for improving operational efficiency of overhead cranes. Nonlinear Dynamics. 2015; 79(4): 2639-2657.
- 13Jolevski D, Bego O. Model predictive control of gantry/bridge crane with anti-sway algorithm. J Mech Sci Technol. 2015; 29(2): 827-834.
- 14Yang T, Sun N, Chen H, Fang Y. Neural network-based adaptive antiswing control of an underactuated ship-mounted crane with roll motions and input dead zones. IEEE Trans Neural Netw Learn Syst. 2019. In press. https://doi.org/10.1109/TNNLS.2019.2910580
- 15Sun Y, Xu J, Qiang H, Lin G. Adaptive neural-fuzzy robust position control scheme for maglev train systems with experimental verification. IEEE Trans Ind Electron. 2019; 66(11): 8589-8599.
- 16Zhang M, Ma X, Rong X, Song R, Tian X, Li Y. A partially saturated adaptive learning controller for overhead cranes with payload hoisting/lowering and unknown parameters. Nonlinear Dynamics. 2017; 89(3): 1779-1791.
- 17Ngo QH, Hong KS. Adaptive sliding mode control of container cranes. IET Control Theory Appl. 2012; 6(5): 662-668.
- 18Zhang M, Zhang Y, Cheng X. An enhanced coupling PD with sliding mode control method for underactuated double-pendulum overhead crane systems. Int J Control Autom Syst. 2019; 17(6): 1579-1588.
- 19Tuan LA. Fractional-order fast terminal back-stepping sliding mode control of crawler cranes. Mech Mach Theory. 2019; 137: 297-314.
- 20Sun Y, Xu J, Qiang H, Chen C, Lin G. Adaptive sliding mode control of maglev system based on RBF neural network minimum parameter learning method. Measurement. 2019; 141: 217-226.
- 21Tuan LA, Lee SG, Ko DH, Nho LC. Combined control with sliding mode and partial feedback linearization for 3D overhead cranes. Int J Robust Nonlinear Control. 2014; 24(18): 3372-3386.
- 22Zhang M. Finite-time model-free trajectory tracking control for overhead cranes subject to model uncertainties, parameter variations and external disturbances. Trans Inst Meas Control. 2019. In press. https://doi.org/10.1177/0142331219830157
- 23Sun N, Wu Y, Chen H, Fang Y. Antiswing cargo transportation of underactuated tower crane systems by a nonlinear controller embedded with an integral term. IEEE Trans Autom Sci Eng. 2019; 16(3): 1387-1398.
- 24Wang X, Liu J, Zhang Y, Shi B, Jiang D, Peng H. A unified symplectic pseudospectral method for motion planning and tracking control of 3D underactuated overhead cranes. Int J Robust Nonlinear Control. 2019; 29(7): 2236-2253.
- 25Chen H, Sun N. Nonlinear control of underactuated systems subject to both actuated and unactuated state constraints with experimental verification. IEEE Trans Ind Electron. 2019. In press. https://doi.org/10.1109/TIE.2019.2946541
- 26Chen H, Xuan B, Yang P, Chen H. A new overhead crane emergency braking method with theoretical analysis and experimental verification. Nonlinear Dynamics. 2019; 98(3): 2211-2225. https://doi.org/10.1007/s11071-019-05318-6
- 27Lu B, Fang Y, Sun N. Nonlinear coordination control of offshore boom cranes with bounded control inputs. Int J Robust Nonlinear Control. 2019; 29(4): 1165-1181.
- 28Sun Y, Xu J, Chen C, Lin G. Fuzzy H∞ robust control for magnetic levitation system of maglev vehicles based on T-S fuzzy model: design and experiments. J Intell Fuzzy Syst. 2018; 36(2): 1-12.
- 29Zhang Z, Wu Y, Huang J. Differential-flatness-based finite-time anti-swing control of underactuated crane systems. Nonlinear Dynamics. 2017; 87(3): 1749-1761.
- 30Sun N, Yang T, Chen H, Fang Y, Qian Y. Adaptive anti-swing and positioning control for 4-DOF rotary cranes subject to uncertain/unknown parameters with hardware experiments. IEEE Trans Syst Man Cybern Syst. 2017; 49(7): 1309-1321.
- 31Sun N, Fang Y, Chen H, Fu Y, Lu B. Nonlinear stabilizing control for ship-mounted cranes with ship roll and heave movements: design, analysis, and experiments. IEEE Trans Syst Man Cybern Syst. 2018; 48(10): 1781-1793.
- 32Sun N, Yang T, Fang Y, Lu B, Qian Y. Nonlinear motion control of underactuated three-dimensional boom cranes with hardware experiments. IEEE Trans Ind Inform. 2018; 14(3): 887-897.
- 33Zhang M, Ma X, Rong X, Song R, Tian X, Li Y. An enhanced coupling nonlinear tracking controller for underactuated 3D overhead crane systems. Asian J Control. 2018; 20(5): 1839-1854.
- 34Zhang M, Ma X, Rong X, Tian X, Li Y. Error tracking control for underactuated overhead cranes against arbitrary initial payload swing angles. Mech Syst Signal Process. 2017; 84: 268-285.
- 35Wu X, He X. Control of the bridge crane by constructing a Lyapunov function: theoretical design and experimental verification. Trans Inst Meas Control. 2016; 39(12): 1763-1770.
- 36Uchiyama N. Robust control of rotary crane by partial-state feedback with integrator. Mechatronics. 2009; 19(8): 1294-1302.
- 37Uchiyama N. Robust control for overhead cranes by partial state feedback. Proc Inst Mech Eng I J Syst Control Eng. 2009; 223(4): 575-580.
- 38Jaafar HI, Mohamed Z, Shamsudin MA, Subha NAM, Ramli L, Abdullahi AM. Model reference command shaping for vibration control of multimode flexible systems with application to a double-pendulum overhead crane. Mech Syst Signal Process. 2019; 115: 677-695.
- 39Masoud ZN, Alhazza KA. Frequency-modulation input shaping control of double-pendulum overhead cranes. J Dyn Syst Meas Control. 2014; 136(2): 021005.
- 40Masoud ZN, Alhazza KA, Abu-Nada E, Majeed M. A hybrid command-shaper for double-pendulum overhead cranes. J Vib Control. 2012; 20(1): 24-37.
- 41Maleki E, Singhose W. Swing dynamics and input-shaping control of human-operated double-pendulum boom cranes. J Comput Nonlinear Dyn. 2012; 7(3): 031006.
- 42Manning R, Clement J, Kim D, Singhose W. Dynamics and control of bridge cranes transporting distributed-mass payloads. J Dyn Syst Meas Control. 2010; 132: 014505.
- 43Vaughan J, Kim D, Singhose W. Control of tower cranes with double-pendulum payload dynamics. IEEE Trans Control Syst Technol. 2010; 18(6): 1345-1358.
- 44Huang J, Xie X, Liang Z. Control of bridge cranes with distributed-mass payload dynamics. IEEE/ASME Trans Mechatron. 2015; 20(1): 481-486.
- 45Ouyang H, Hu J, Zhang G, Mei L, Deng X. Decoupled linear model and S-shaped curve motion trajectory for load sway reduction control in overhead cranes with double-pendulum effect. Proc Inst Mech Eng C J Mech Eng Sci. 2019; 233(10): 3678-3689.
- 46Ouyang H, Deng X, Xi H, Hu J, Zhang G, Mei L. Novel robust controller design for load sway reduction in double-pendulum overhead cranes. Proc Inst Mech Eng C J Mech Eng Sci. 2019; 233(12): 4359-4371.
- 47Ouyang H, Hu J, Zhang G, Mei L, Deng X. Sliding-mode-based trajectory tracking and load sway suppression control for double-pendulum overhead cranes. IEEE Access. 2019; 7: 4371-4379.
- 48Ouyang H, Wang J, Zhang G, Mei L, Deng X. Novel adaptive hierarchical sliding mode control for trajectory tracking and load sway rejection in double-pendulum overhead cranes. IEEE Access. 2019; 7: 10353-10361.
- 49Zhang M, Ma X, Rong X, Song R, Tian X, Li Y. A novel energy-coupling-based control method for double-pendulum overhead cranes with initial control force constraints. Adv Mech Eng. 2018; 10(1): 1-13.
- 50Sun N, Yang T, Fang Y, Wu Y, Chen H. Transportation control of double-pendulum cranes with a nonlinear quasi-PID scheme: design and experiments. IEEE Trans Syst Man Cybern Syst. 2018; 49(7): 1408-1418.
- 51Sun N, Wu Y, Fang Y, Chen H. Nonlinear antiswing control for crane systems with double-pendulum swing effects and uncertain parameters: design and experiments. IEEE Trans Autom Sci Eng. 2018; 15(3): 1413-1422.
- 52Sun N, Wu Y, Chen H, Fang Y. An energy-optimal solution for transportation control of cranes with double pendulum dynamics: design and experiments. Mech Syst Signal Process. 2018; 102: 87-101.
- 53Sun N, Fang Y, Chen H, Lu B. Amplitude-saturated nonlinear output feedback antiswing control for underactuated cranes with double-pendulum cargo dynamics. IEEE Trans Ind Electron. 2017; 64(3): 2135-2146.
- 54Qian D, Tong S, Lee S. Fuzzy-logic-based control of payloads subjected to double-pendulum motion in overhead cranes. Autom Constr. 2016; 65: 133-143.
- 55Qian D, Tong S, Yang B, Lee S. Design of simultaneous input-shaping-based SIRMs fuzzy control for double-pendulum-type overhead cranes. Bull Pol Acad Sci Tech Sci. 2015; 63(4): 887-896.
- 56Tuan LA, Lee S-G. Sliding mode controls of double-pendulum crane systems. J Mech Sci Technol. 2013; 27(6): 1863-1873.
- 57Ouyang H, Wang J, Zhang G, Mei L, Deng X. Trajectory generation for double-pendulum rotary crane [in Chinese with English abstract]. Control Theory Appl. 2019; 36(8): 1265-1274.
- 58Ouyang H, Wang J, Zhang G, Mei L, Deng X. Tracking and anti-sway control for double-pendulum rotary cranes using novel sliding mode algorithm [in Chinese with English abstract]. Acta Autom Sin. 2019; 45(7): 1344-1353.
- 59Ouyang H, Wang J, Zhang G, Mei L, Deng X. An LMI-based simple robust control for load sway rejection of rotary cranes with double-pendulum effect. Math Probl Eng. 2019; 2019: 1-15. Article ID 3128356.
- 60Khalil HK. Nonlinear Systems. 3rd ed. Englewood Cliffs, NJ: Prentice-Hall; 2002.