A DFT study of a novel oxime anticancer trans platinum complex: Monofunctional and bifunctional binding to purine bases
Zhijuan Xu
Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
Search for more papers by this authorCorresponding Author
Lixin Zhou
Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of ChinaSearch for more papers by this authorZhijuan Xu
Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
Search for more papers by this authorCorresponding Author
Lixin Zhou
Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of ChinaSearch for more papers by this authorAbstract
The first and second substitution reactions binding of the anticancer drug trans-[Pt((CH3)2CNOH)((CH3)2CHNH2)Cl2] to purine bases were studied computationally using a combination of density functional theory and isoelectric focusing polarized continuum model approach. Our calculations demonstrate that the trans monoaqua and diaqua reactant complexes (RCs) can generate either trans- or cis-monoadducts via identical or very similar trans trigonal-bipyramidal transition-state structures. Furthermore, these monoadducts can subsequently close by coordination to the adjacent purine bases to form 1,2-intrastrand Pt-DNA adducts and eventually distort DNA in the same way as cisplatin. Thus, it is likely that the transplatin analogues have the same mechanism of anticancer activity as cisplatin. For the first substitutions, the activation free energies of monoaqua complexes are always lower than that of diaqua complexes. The lowest activation energy for monoaqua substitutions is 16.2 kcal/mol for guanine and 16.5 kcal/mol for adenine, whereas the lowest activation energy for diaqua substitutions is 17.1 kcal/mol for guanine and 25.9 kcal/mol for adenine. For the second substitutions, the lowest activation energy from trans-monoadduct to trans-diadduct is 19.1 kcal/mol for GG adduct and 20.7 kcal/mol for GA adduct, whereas the lowest activation energy from cis-monoadduct to cis-diadduct is 18.9 kcal/mol for GG adduct and 18.5 kcal/mol for GA adduct. In addition, the first and second substitutions prefer guanine over adenine, which is explained by the remarkable larger complexation energy for the initial RC in combination with lower activation energy for the guanine substitution. Overall, the hydrogen-bonds play an important role in stabilizing these species of the first and second substitutions. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
QUA_22488_sm_suppinfo.doc4.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Belani, C. P. Semin Oncol 2004, 31, 25.
- 2 Loehrer, P. J.; Einhorn, L. H. Ann Intern Med 1984, 100, 704.
- 3 Fuertes, M. A.; Alonso, C.; Perez, J. M. Chem Rev 2003, 103, 645.
- 4 Kelland, L. R. Drugs 2000, 59, 1.
- 5 Giaccone, G. Drugs 2000, 59, 9.
- 6 Lebwohl, D.; Canetta, R. Eur J Cancer 1998, 34, 1522.
- 7 Jakupec, M. A.; Galanski, M.; Arion, V. B.; Hartinger, C. G.; Keppler, B. K. Dalton Trans 2008, 183.
- 8 Spingler, B.; Whittington, D. A.; Lippard, S. J. Inorg Chem 2001, 40, 5596.
- 9 Raymond, E.; Chaney, S. G.; Taamma, A.; Cvitkovic, E. Ann Oncol 1998, 9, 1053.
- 10 Teuben, J. M.; Bauer, C.; Wang, A. H.; Reedijk, J. Biochemistry 1999, 38, 12305.
- 11 Go, R. S.; Adjei, A. A. J Clin Oncol 1999, 17, 409.
- 12 Ito, K.; Adachi, S.; Itani, Y.; Koyama, M.; Hori, K.; Chin, R.; Shintani, M.; Beppu, K.; Kawai, S.; Saito, K. Jpn J Clin Oncol 1999, 29, 299.
- 13 Wong, E.; Giandomenico, C. M. Chem Rev 1999, 99, 2451.
- 14 Wang, D.; Lippard, S. J. Nat Rev Drug Discov 2005, 4, 307.
- 15 Reedijk, J. Chem Rev 1999, 99, 2499.
- 16 Jamieson, E. R.; Lippard, S. J. Chem Rev 1999, 99, 2467.
- 17 Fichtinger-Schepman, A. M. J.; Van der Veer, J. L.; Den Hartog, J. H. J.; Lohman, P. H. M.; Reedijk, J. Biochemistry 1985, 24, 707.
- 18 Jung, Y.; Lippard, S. J. Chem Rev 2007, 107, 1387.
- 19 Ober, M.; Lippard, S. J. J Am Chem Soc 2008, 130, 2851.
- 20 Boudvillain, M.; Dalbies, R.; Aussourd, C.; Leng, M. Nucleic Acids Res 1995, 23, 2381.
- 21 Natile, G.; Coluccia, M. Coord Chem Rev 2001, 216-217, 383.
- 22 Kalinowska-Lis, U.; Ochocki, J.; Matlawska-Wasowska, K. Coord Chem Rev 2008, 252, 1328.
- 23 Quiroga, A. G.; Cubo, L.; de Blas, E.; Aller, P.; Navarro-Ranninger, C. J Inorg Biochem 2007, 101, 104.
- 24 Vetrovsky, P.; Boucher, J. L.; Schott, C.; Beranova, P.; Chalupsky, K.; Callizot, N.; Muller, B.; Entlicher, G.; Mansuy, D.; Stoclet, J. C. J Pharmacol Exp Ther 2002, 303, 823.
- 25 Saglam, N.; Colak, A.; Serbest, K.; Dülger, S.; Güner, S.; Karaböcek, S.; Beldüz, A. O. Biometals 2002, 15, 357.
- 26 Hambley, T. W.; Ling, E. C. H.; O'Mara, S.; McKeage, M. J.; Russell, P. J. J Biol Inorg Chem 2000, 5, 675.
- 27 Failes, T. W.; Hall, M. D.; Hambley, T. W. Dalton Trans 2003, 1596.
- 28 Montero, E. I.; Diaz, S.; Gonzalez-Vadillo, A. M.; Perez, J. M.; Alonso, C.; Navarro-Ranninger, C. J Med Chem 1999, 42, 4264.
- 29 Perez, J. M.; Montero, E. I.; Gonzalez, A. M.; Solans, X.; Font-Bardia, M.; Fuertes, M. A.; Alonso, C.; Navarro-Ranninger, C. J Med Chem 2000, 43, 2411.
- 30 Ramos-Lima, F. J.; Vrana, O.; Quiroga, A. G.; Navarro-Ranninger, C.; Halamikova, A.; Rybnickova, H.; Hejmalova, L.; Brabec, V. J Med Chem 2006, 49, 2640.
- 31 Dans, P. D.; Crespo, A.; Estrin, D. A.; Coitino, E. L. J Chem Theory Comput 2008, 4, 740.
- 32 Zhang, Y.; Guo, Z. J.; You, X. Z. J Am Chem Soc 2001, 123, 9378.
- 33 Robertazzi, A.; Platts, J. A. J Comput Chem 2004, 25, 1060.
- 34 Tsipis, A. C.; Sigalas, M. P. J Mol Struct (THEOCHEM) 2002, 584, 235.
- 35 Burda, J. V.; Zeizinger, M.; Leszczynski, J. J Comput Chem 2005, 26, 907.
- 36 Burda, J. V.; Leszczynski, J. Inorg Chem 2003, 42, 7162.
- 37 Baik, M. H.; Friesner, R. A.; Lippard, S. J. Inorg Chem 2003, 42, 8615.
- 38 Spiegel, K.; Rothlisberger, U.; Carloni, P. J Phys Chem B 2004, 108, 2699.
- 39
Monjardet-Bas, V.; Elizondo-Riojas, M. A.; Chottard, J. C.; Kozelka, J.
Angew Chem Int Ed Engl
2002,
41,
2998.
10.1002/1521-3773(20020816)41:16<2998::AID-ANIE2998>3.0.CO;2-1 CAS PubMed Web of Science® Google Scholar
- 40 Costa, L. A. S.; Hambley, T. W.; Rocha, W. R.; Almeida, W. B. D.; Santos, H. F. D. Int J Quantum Chem 2006, 106, 2129.
- 41 Mantri, Y.; Lippard, S. J.; Baik, M. H. J Am Chem Soc 2007, 129, 5023.
- 42 Robertazzi, A.; Platts, J. A. Inorg Chem 2005, 44, 267.
- 43 Baik, M. H.; Friesner, R. A.; Lippard, S. J. J Am Chem Soc 2002, 124, 4495.
- 44 Deubel, D. V. J Am Chem Soc 2002, 124, 5834.
- 45 Baik, M. H.; Friesner, R. A.; Lippard, S. J. J Am Chem Soc 2003, 125, 14082.
- 46 Raber, J.; Zhu, C.; Eriksson, L. A. J Phys Chem B 2005, 109, 11006.
- 47 Deubel, D. V. J Am Chem Soc 2004, 126, 5999.
- 48 Bancroft, D. P.; Lepre, C. A.; Lippard, S. J. J Am Chem Soc 1990, 112, 6860.
- 49 Davies, M. S.; Berners-Price, S. J.; Hambley, T. W. Inorg Chem 2000, 39, 5603.
- 50 Lau, J. K. C.; Deubel, D. V. J Chem Theory Comput 2006, 2, 103.
- 51 Legendre, F.; Bas, V.; Kozelka, J.; Chottard, J. C. Chem Eur J 2002, 2000, 6.
- 52 Kohn, W.; Sham, L. J. Phys Rev 1965, 140, 1133A.
- 53 Hohenberg, P.; Kohn, W. Phys Rev 1964, 136, 864B.
- 54 Becke, A. D. J Chem Phys 1993, 98, 5648.
- 55 Lee, C.; Yang, W.; Parr, R. G. Phys Rev B 1988, 37, 785.
- 56 Wadt, W. R.; Hay, P. J. J Chem Phys 1985, 82, 284.
- 57 Hay, P. J.; Wadt, W. R. J Chem Phys 1985, 82, 270.
- 58 Hay, P. J.; Wadt, W. R. J Chem Phys 1985, 82, 299.
- 59 Gonzalez, C.; Schlegel, H. B. J Phys Chem 1990, 94, 5523.
- 60
Carlos, G.; Schlegel, H. B.
J Chem Phys
1989,
90,
2154.
10.1063/1.456010 Google Scholar
- 61 Mennucci, B.; Tomasi, J. J Chem Phys 1997, 106, 5151.
- 62 Mennucci, B.; Cances, E.; Tomasi, J. J Phys Chem B 1997, 101, 10506.
- 63 Tomasi, J.; Mennucci, B.; Cances, E. J Mol Struct (THEOCHEM) 1999, 464, 211.
- 64 Boys, S. F.; Bernardi, F. Mol Phys 1970, 19, 553.
- 65 Simon, S.; Duran, M.; Dannenberg, J. J. J Chem Phys 1996, 105, 11024.
- 66 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R. Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian 03; Gaussian: Wallingford, CT, 2004.
- 67 Zhou, L. J Phys Chem B 2009, 113, 2110.