MRCI study of the photoelectron spectrum of GeC and GeSi and their GeC+ and GeSi+ ions
Leonardo T. Ueno
Departamento de Química, Instituto Tecnológico de Aeronáutica, Centro Técnico Aeroespacial, São José dos Campos, SP 12228-900, Brazil
Search for more papers by this authorL. R. Marim
Departamento de Física, Instituto Tecnológico de Aeronáutica, Centro Técnico Aeroespacial, São José dos Campos, SP 12228-900, Brazil
Search for more papers by this authorA. Dal Pino Jr.
Departamento de Física, Instituto Tecnológico de Aeronáutica, Centro Técnico Aeroespacial, São José dos Campos, SP 12228-900, Brazil
Search for more papers by this authorCorresponding Author
Francisco B. C. Machado
Departamento de Química, Instituto Tecnológico de Aeronáutica, Centro Técnico Aeroespacial, São José dos Campos, SP 12228-900, Brazil
Departamento de Química, Instituto Tecnológico de Aeronáutica, Centro Técnico Aeroespacial, São José dos Campos, SP 12228-900, BrazilSearch for more papers by this authorLeonardo T. Ueno
Departamento de Química, Instituto Tecnológico de Aeronáutica, Centro Técnico Aeroespacial, São José dos Campos, SP 12228-900, Brazil
Search for more papers by this authorL. R. Marim
Departamento de Física, Instituto Tecnológico de Aeronáutica, Centro Técnico Aeroespacial, São José dos Campos, SP 12228-900, Brazil
Search for more papers by this authorA. Dal Pino Jr.
Departamento de Física, Instituto Tecnológico de Aeronáutica, Centro Técnico Aeroespacial, São José dos Campos, SP 12228-900, Brazil
Search for more papers by this authorCorresponding Author
Francisco B. C. Machado
Departamento de Química, Instituto Tecnológico de Aeronáutica, Centro Técnico Aeroespacial, São José dos Campos, SP 12228-900, Brazil
Departamento de Química, Instituto Tecnológico de Aeronáutica, Centro Técnico Aeroespacial, São José dos Campos, SP 12228-900, BrazilSearch for more papers by this authorAbstract
The lowest-lying states of the species GeC, GeC+, GeSi, and GeSi+ were studied using the multireference configuration interaction (MRCI) method and the aug-cc-pVQZ basis set. For the first time, the GeC+ molecule was characterized. The dissociation energy (D0) of the ground state (X3∏) of GeC is equal to 3.70 eV, showing good agreement with the theoretical result (3.90 eV) of Sari and colleagues. These results, however, are considerably smaller than the experimental value of 4.72 eV. The dissociation energy of the ground state (X3∑−) of GeSi is equal to 2.90 eV, and it is in very good agreement with the experimental value (3.08 eV). The most favorable transitions are A3∑− (GeC) → X4∑− (GeC+), A3∑− (GeC) → b2∏ (GeC+) and X3∑− (GeSi) → X4∑− (GeSi+), which present very few peaks in the spectra. © 2006 Wiley Periodicals, Inc. J Quantum Chem, 2006
References
- 1 Ballard, R. E. Photoelectron Spectroscopy and Molecular Orbital Theory; Wiley: New York, 1978.
- 2
Eland, J. H. D.
Photoelectron spectroscopy;
2nd ed.;
Butterworths:
London,
1984.
10.1016/B978-0-408-71057-2.50005-3 Google Scholar
- 3 Travers, M. J.; Cowles, D. C.; Clifford, E. P.; Ellisona, G. B. J Chem Phys 1999, 111, 5349.
- 4 Kim, J. H.; Li, X.; Wang L.-S. J. Phys Chem A 2001, 105, 5709.
- 5 Rupper, P.; Zehnder, O.; Merkt, F. J Chem Phys 2004, 121, 8279.
- 6 Wüest, A.; Merkt, F. J Chem Phys 2004, 120, 638.
- 7 Borin, A. C.; Ornellas, F. R. Chem Phys 1994, 184, 59.
- 8 Takeshita, K.; Shida N.; Miyoshi, E. J Chem Phys 2000, 112, 10838.
- 9 Marim, L. R.; Lemes, M. R.; Dal Pino, A., Jr. Phys Rev A 2003, 67, 33203.
- 10 Marim, L. R.; Lemes, M. R.; Dal Pino, A., Jr. J Mol Struct (Theochem) 2003, 663, 159.
- 11 Lemes, M. R.; Marim, L. R.; Dal Pino, A., Jr. Phys Rev A 2002, 66, 23203.
- 12 Shvartsburg, A. A.; Liu, B.; Jarrold, M. F.; Ho, K. M. J Chem Phys 2000, 112, 4517.
- 13 Liu, B.; Lu, Z. Y.; Pan, B.; Wang, C. Z.; Ho, K. M. J Chem Phys 1998, 109, 9401.
- 14 Jackson, K.; Pederson, M.R.; Porezag, D.; Hajnal, Z.; Frauenheim, T. Phys Rev B 1997, 55, 2549.
- 15 Lu, Z. Y.; Wang, C. Z.; Ho, K. M. Phys Rev B 2000, 61, 2329.
- 16 Hitchman M. L.; Jensen, K. F. Chemical Vapor Deposition; Academic Press: San Diego, CA, 1993.
- 17
Dobkin D. M.;
Zuraw, M. K.
Principles of Chemical Vapor Deposition;
Kluwer Academic Publishers:
Netherlands,
2003.
10.1007/978-94-017-0369-7 Google Scholar
- 18 Drowart, J.; De Maria, G.; Boerboom, A. J. H.; Inghram, M. G. J Chem Phys 1959, 30, 308.
- 19 Shim, I.; Sai Baba, M.; Gingerich, K.A. J Phys Chem 1998, 102, 10763.
- 20 Sefyani, F. L.; Schamps. J.; Robbe, J. M. Mol Phys 1994, 83, 1.
- 21 Li, S.-D.; Zhao, Z.-G.; Zhao, X.-F.; Wu. H.-S.; Jin, Z.-H. Phys Rev B 2001, 64, 195312.
- 22 Sari, L.; Yamaguchi, Y.; Schaefer, H., III. J Chem Phys 2003, 119, 8266.
- 23 Li, S.; Zee, R. J. V.; Weltner, W. Chem Phys Lett 1994, 229, 531.
- 24 Andzelm, J.; Russo, N.; Salahub, D. R. J Chem Phys 1987, 87, 6562.
- 25 Sefyani, F. L.; Schamps, J.; Delaval, J. M. J Mol Spectrosc 1993, 162, 269.
- 26 Sefyani, F. L.; Schamps, J.; Delaval, J. M. J Phys II France 1994, 4, 439.
- 27 Werner, H.-J.; Knowles, P. J. J Chem Phys 1985, 82, 5053.
- 28 Knowles, P. J.; Werner, H.-J. Chem Phys Lett. 1985, 115, 259.
- 29 Werner, H.-J.; Knowles, P. J. J Chem Phys 1988, 89, 5803.
- 30 Knowles, P. J.; Werner, H.-J Chem Phys Lett. 1988, 145, 514.
- 31 Werner, H.-J.; Knowles, P. J.; with contributions from Almlöf, J.; Amos, R. D.; Berning, A.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Elbert, S. T.; Hampel, C.; Lindh, R.; Lloyd, A. W.; Meyer, W.; Nicklass, A.; Peterson, K.; Pitzer, R.; Stone, A. J.; Taylor, P. R.; Mura, M. E.; Pulay, P.; Schütz, M.; Stoll, H.; Thorsteinsson, T. MOLPRO; version 2002.6.
- 32 Dunning, T. H. J Chem Phys 1989, 90, 1007.
- 33 Koput, J.; Peterson, K. A. J Phys Chem A 2002, 106, 9595.
- 34 Zemke, W. T.; Stwalley, W. C. QCPE Bull 1981, 4, 79.
- 35 Langhoff, S.R; Davidson, E. R. Int J Quantum Chem 1972, 8, 61.
- 36 Sugar, J.; Musgrove, A. J Phys Chem Ref. Data 1993, 22, 1213.