Theoretical electronic spectra of 2-aminopurine in vapor and in water
Antonio Carlos Borin
Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
Search for more papers by this authorLuis Serrano-Andrés
Instituto de Ciencia Molecular, Universitat de Valéncia, Dr. Moliner 50, Burjassot, ES-46100 Valencia, Spain
Search for more papers by this authorCorresponding Author
Valdemir Ludwig
Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, SP, Brazil
Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, SP, BrazilSearch for more papers by this authorKaline Coutinho
Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, SP, Brazil
Search for more papers by this authorSylvio Canuto
Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, SP, Brazil
Search for more papers by this authorAntonio Carlos Borin
Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
Search for more papers by this authorLuis Serrano-Andrés
Instituto de Ciencia Molecular, Universitat de Valéncia, Dr. Moliner 50, Burjassot, ES-46100 Valencia, Spain
Search for more papers by this authorCorresponding Author
Valdemir Ludwig
Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, SP, Brazil
Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, SP, BrazilSearch for more papers by this authorKaline Coutinho
Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, SP, Brazil
Search for more papers by this authorSylvio Canuto
Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, SP, Brazil
Search for more papers by this authorAbstract
The accurate quantum chemical CASSCF and CASPT2 methods combined with a Monte Carlo procedure to mimic solvation effects have been used in the calculation of the spectroscopic properties of two tautomers of 2-aminopurine (2AP). Absorption and emission spectra have been simulated both in vacuum and in aqueous environment. State and transition energies and properties have been obtained with high accuracy, leading to the assignment of the most important spectroscopic features. The lowest-lying 1(π,π*) (1La) state has been determined as responsible for the first band in the absorption spectrum and also for the strong fluorescence observed for the system in water. The combined approach used in the present work gives quantitatively accurate results. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006
References
- 1 Serrano-Andrés, L.; Roos, B. O. J Am Chem Soc 1996, 118, 185.
- 2 Fülscher, M. P.; Serrano-Andrés, L.; Roos, B. O. J Am Chem Soc 1997, 119, 6168.
- 3 Borin, A. C.; Serrano-Andrés, L.; Fülscher, M. P.; Roos, B. O. J Phys Chem A 1999, 103, 1838.
- 4 Borin, A. C.; Serrano-Andrés, L. J Mol Struct (Theochem) 1999, 464, 121.
- 5 Borin, A. C.; Serrano-Andrés, L. Chem Phys 2000, 262, 253.
- 6 Serrano-Andrés, L.; Borin, A. C. Chem Phys 2000, 262, 267.
- 7 Borin, A. C.; Serrano-Andrés, L.; Ludwig, V.; Canuto, S. Phys Chem Chem Phys 2003, 5, 5001.
- 8 Ludwig, V.; Coutinho, K.; Borin, A. C.; Canuto, S. Int J Quantum Chem 2003, 95, 572.
- 9 Andersson, K.; Malmqvist, P.-Å.; Roos, B. O. J Chem Phys 1992, 96, 1218.
- 10 Roos, B. O.; Andersson, K.; Fülscher, M. P.; Malmqvist, P.-Å.; Serrano-Andrés, L.; Pierloot, K.; Merchán, M. In Advances in Chemical Physics: New Methods in Computational Quantum Mechanics; I. Prigogine; S. A. Rice, Eds.; John Wiley & Sons: New York, 1996; p 219.
- 11 Merchán, M; Serrano-Andrés. L. In Computational Photochemistry; M. Olivucci, Ed.; Elsevier: Amsterdam, 2003; p 1.
- 12 Crespo-Hernández, C. E.; Cohen, B.; Hare, P. M.; Kohler, B.; Chem Rev 2004, 104, 1977.
- 13 Merchán, M.; Serrano-Andrés, L. J Am Chem Soc 2003, 125, 8108.
- 14 Serrano-Andrés, L.; Merchán, M.; Borin. A. C. (unpublished).
- 15 Perun, S.; Sobolewski, A. L.; Domcke, W. J Am Chem Soc 2005, 127, 6257.
- 16 Callis, P. R. Annu Rev Phys Chem 1983, 34, 329.
- 17 Holmén, A.; Nordén, B.; Albinsson, B. J Am Chem Soc 1997, 119, 3114.
- 18 Goodman, M. F.; Watanabe, S. M. Proc Natl Acad Sci USA 1981, 78, 2864.
- 19 Mendelman, L. V.; Boosalis, M. S.; Petruska, J.; Goodman, M. F. J Biol Chem 1989, 264, 14415.
- 20 Nordlund, T. M.; Andersson, L.; Nilsson, L.; Rigler, R.; Gräslund, A.; McLaughlin, L. W. Biochemistry 1989, 28, 9095.
- 21 Guest, C. R.; Hochstrasser, R. A.; Sowers, L. C.; Millar, D. P. Biochemistry 1991, 30, 3271.
- 22 Hochstrasser, R. A.; Carver T.E.; Sowers L. C.; Millar, D. P. Biochemistry 1994, 39, 11971.
- 23 Rachofsky, E. L.; Ross, J. B. A.; Kraus, M.; Osman, R. J Phys Chem A 2001, 105, 190.
- 24 Merchán, M.; Serrano-Andrés, L.; Fülscher, M. P.; Roos, B. O. In Recent Advances in Multireference Theory; K. Hirao, Ed.; World Scientific: Singapore, 1999; p 162.
- 25 Serrano-Andrés, L.; Merchán, M. In Encyclopedia of Computational Chemistry; P. R. Schleyer; H. F. Schaefer; P. Schreiner; W. L. Jorgensen; W. Thiel, Eds.; Wiley: Chichester, UK, 2004.
- 26 Canuto, S.; Coutinho, K. Adv Quantum Chem 1997, 28, 89.
- 27 Coutinho, K.; Canuto, S. J Chem Phys 2000, 113, 9132.
- 28 Canuto, S.; Coutinho, K.; Trzesniak, D. Adv Quantum Chem 2002, 41, 161.
- 29 Malaspina, T.; Coutinho, K.; Canuto, S. J Chem Phys 2002, 117, 1962.
- 30 Roos, B. O. In Advances in Chemical Physics. Ab Initio Methods in Quantum Chemistry; Vol II; K. P. Lawley Ed.; John Wiley & Sons: Chichester, UK, 1987; p 399.
- 31 Widmark, P.-O.; Malmqvist, P.-Å.; Roos, B. O. Theor Chim Acta 1990, 77, 291.
- 32 Roos, B. O.; Fülscher, M. P.; Malmqvist, P.-Å.; Serrano-André, L.; Merchán, M. In Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy; S. R. Langhoff, Ed.; Kluwer/Academic: The Netherlands, 1995; p 357.
- 33 Roos, B. O.; Andersson, K.; Fülscher, M. P.; Serrano-Andrés, L.; Pierloot, K.; Merchán, M.; Molina, B. J Mol Struct (Theochem) 1996, 388, 257.
- 34 Malmqvist, P.-Å.; Roos, B. O. Chem Phys Lett 1989, 155, 189.
- 35 Andersson, K.; Barysz, M.; Bernhardsson, A.; Blomberg, M. R. A.; Cooper, D. L.; Fülscher, M. P.; Graaf, C.; Hess, B. A.; Karlström, G.; Malmqvist, P.-Å.; Nakajima, T.; Lindh, R.; Malmqvist, P.-Å.; Neogrády, P.; Olsen, J.; Roos, B. O.; Schimmelpfennig, B.; Schütz, M.; Seijo, L.; Serrano-Andrés, L.; Siegbahn, P. E. M.; Stålring, J.; Thorsteinsson, T.; Veryazov, V.; Widmark, P.-O. MOLCAS; Version 5; Lund University: Lund, Sweden, 2000.
- 36 Coutinho, K.; Canuto, S.; Zerner, M. C. J Chem Phys 2000, 112, 9874.
- 37 Allen, M. P.; Tildesley, D. J Computer Simulation of Liquids; Oxford University Press: Oxford, UK, 1987.
- 38 Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. J Chem Phys 1953, 21, 1087.
- 39 Coutinho, K.; Canuto, S. A Monte Carlo Program for Molecular Liquid Simulation. University of São Paulo: São Paulo, SP, Brazil, 2000.
- 40 Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F. In Intermolecular Forces; B. Pullman, Ed.; Reidel: Dordrecht; The Netherlands, 1981; p 331.
- 41 Jorgensen, W. L.; Briggs, J. M.; Contreras, M. L. J Phys Chem 1990, 94, 1683.
- 42 Jorgensen, W. L.; Severance, D. L. J Am Chem Soc 1990, 112, 4768.
- 43 Breneman, C. M.; Wiberg, K. B. J Comp Chem 1990, 11, 361.
- 44 Serrano-Andrés, L.; Merchán, M.; Borin, A. C.; Stålring, J. Int J Quantum Chem 2001, 84, 181.
- 45 Jean, J. M.; Hall, K. B. J Phys Chem A 2000, 104, 1930.
- 46 Broo, A.; Holmén, A. Chem Phys 1996, 211, 147.
- 47 Majoube, M.; Millié, P.; Turpin, P. Y.; Vergoten, G. J Mol Struct 1995, 355, 147.
- 48 Serrano-Andrés, L.; Fülscher, M. P.; Roos, B. O.; Merchán, M. J Phys Chem 1996, 100, 6484.
- 49 Platt, J. R. J Chem Phys 1949, 17, 489.
- 50 Santhosh, C.; Mishra, P. C. Spectrochim Acta 1991, 47A, 1685.
- 51 Mishra, P. C.; Mishra, S. K.; Shukla, M. K. Spectrochim Acta 1990, 56A, 1355.
- 52 Broo, A. J Phys Chem A 1998, 102, 526.
- 53 Mennucci, B.; Toniolo, A.; Tomasi, J. J Phys Chem A 2001, 105, 4749.
- 54 Zhang, R.; Ai, X.; Zhang, X.; Zhang, Q. J Mol Struct (Theochem) 2004, 680, 21.
- 55 Pal, S. K.; Peon, J.; Zewail, A. H. Chem Phys Lett 2002, 363, 57.
- 56
Smagowics, J.;
Wierzchowshi, K.L.
J Lumin
1974,
8,
210.
10.1016/0022-2313(74)90057-X Google Scholar
- 57 Cancès, E.; Mennucci, B.; Tomasi, J. J Chem Phys 1997, 107, 3032.
- 58 Vreven, T.; Morokuma, K. J Comp Chem 2000, 21, 1419.
- 59 Rachsfsky, E. L.; Sowers, L.; Hawkins, M. L.; Balis, F. M.; Laws, W. R.; Roos, J. B. A. Proc SPIE 3256, 1998, 68.
- 60
Fiebig, T.;
Wan, C.;
Zewail A. H.
Chem Phys Chem
2002,
3,
781.
10.1002/1439-7641(20020916)3:9<781::AID-CPHC781>3.0.CO;2-U CAS PubMed Web of Science® Google Scholar
- 61 Neely, R. K.; Magennis, S. W.; Dryden, D. T. F.; Jones, A. C. J Phys Chem B 2004, 108, 17606.
- 62 Somsen, O. J. G.; Van Hoeck. A.; Chem Phys Lett 2005, 402, 61.
- 63 Nir, E.; Kleinermanns, K.; Grace, L.; De Vries, M. S. J Phys Chem A 2001, 105, 5106.
- 64 Seefeld, K. A.; Plützer, C.; Löwenich, C.; Häber, T.; Linder, R.; Kleinermanns, K.; Tatchen, J.; Marian, M. Phys Chem Chem Phys 2005, 7, 3021.
- 65 McCullough, A. K.; Dodson, M. L.; Scharer, O. D.; Lloyd, R. S. Biol Chem 1997, 272, 27210.
- 66 Ward, D. C.; Reich, E.; Stryer L. J Biol Chem 1969, 244, 1228.
- 67 Rubio-Pons, O.; Serrano-Andrés, L.; M. Merchán, M. J Phys Chem A 2001, 105, 9664.
- 68 Öhrn, A; Karlström G. J Phys Chem 2004, 108, 8452.
- 69 Harden, M. R.; Jarvest, L. R.; Slawin, A. M. Z.; Williams, D. J Nucleosides 1990, 9, 499.