Theory of chemical bonds in metalloenzymes I: Analytical and hybrid-DFT studies on oxo and hydroxo diiron cores
Corresponding Author
M. Shoji
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, JapanSearch for more papers by this authorY. Nishiyama
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorY. Maruno
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorK. Koizumi
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorY. Kitagawa
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorS. Yamanaka
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorT. Kawakami
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorM. Okumura
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorK. Yamaguchi
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorCorresponding Author
M. Shoji
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, JapanSearch for more papers by this authorY. Nishiyama
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorY. Maruno
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorK. Koizumi
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorY. Kitagawa
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorS. Yamanaka
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorT. Kawakami
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorM. Okumura
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorK. Yamaguchi
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorAbstract
Oxo- or hydroxo-bridged diiron centers are ubiquitous in metalloenzymes such as hemerythrin (Hr), ribonucleotide reductase, methane monooxygenase, and rubrerythrin. In each enzyme the diiron core plays a central role in the highly specific reaction. To elucidate mechanisms of these reactions, many experimental studies have been carried out, and bioinorganic model compounds have also been synthesized for the purpose. In this study electronic structures of diiron centers for Hr model compounds are investigated from the viewpoint of magnetic interactions. To this end, the Hubbard model for the three-center four-electron bond is analytically solved to elucidate an important role of electron correlation and the resulting superexchange interaction between localized spins. The hybrid density functional theory (DFT) calculations also are performed for Hr model compounds to provide the natural orbitals and their occupation numbers, which are crucial for computations of several chemical indices, such as effective bond order, information entropy, and unpaired electron density. These indices are useful for characterization and understanding of chemical bonds in FeOFe cores. The calculated effective exchange integrals (Jab) are wholly consistent with the available experiments. The orbital interactions in the FeOFe cores are reconsidered in relation to recent work by other groups. It is found that magnetic interactions are sensitive to the hydrogen bonds in the systems and are related to effective regulation of the activity. Implications of the calculated results are discussed in relation to the nature of chemical bonds in the FeOFe cores of several biological systems. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004
REFERENCES
- 1 Eklund, H. Handbook of Metalloproteins; Wiley: New York, 699–711.
- 2 Lippard, S. J.; Berg, J. M. Principles of Bioinorganic Chemistry; University Science Books: California, 1994.
- 3 Kurtz, D. M., Jr. Chem Rev 1990, 90, 585.
- 4 Que, L., Jr.; True, A. E. Bioinorg Chem 1990, 38, 97.
- 5 Armstrong, W. H.; Lippard, S. J. J Am Chem Soc 1983, 105, 4837.
- 6 Hartman, J. R.; Rardin, R. L.; Chaudhuri, P.; Pohl, K.; Wieghardt, K.; Nuber, B.; Weiss, J.; Papaefthymiou, G. C.; Frankel, R. B.; Lippard, S. J. J Am Chem Soc 1987, 109, 7387.
- 7 Loehr, J. S.; Wheeler, W. D.; Shiemke, A. K.; Averill, B. A.; Loehr, T. M. J Am Chem Soc 1989, 111, 8084.
- 8 Spool, A.; Williams, I. D.; Lippard, S. J. Inorg Chem 2156, 24, 2156.
- 9 Zhang, K.; Stern, E. A.; Ellis, F.; Loehr, J. S.; Shiemke, A. K. Biochemistry 1988, 27, 7470.
- 10 Ericson, A.; Hedman, B.; Hodgson, K. O. J Am Chem Soc 1988, 110, 2332.
- 11 Scarrow, R. C.; Maroney, M. J.; Palmer, S. M.; Que, L. J Am Chem Soc 1986, 108, 6832.
- 12 Scarrow, R. C.; Maroney, M. J.; Palmer, S. M.; Que, L.; Roe, A. L.; Saloew, S. P.; Stubbe, J. J Am Chem Soc 1987, 109, 7857.
- 13 Czernuszewics, R. S.; Sheats, J. E.; Spiro, T. G. Inorg Chem 1987, 26, 2063.
- 14 Hadman, B.; Co, M. S.; Armstrong, W. H.; Hodgson, K. O.; Lippard, S. J. Inorg Chem 1986, 25, 3708.
- 15 Kauzlarich, S. M.; Teo, B. K.; Zirino, T.; Burman, S.; Davis, J. C.; Averill, B. A. Inorg Chem 1986, 25, 2781.
- 16 Armstrong, W. H.; Lippard, S. J. J Am Chem Soc 1984, 106, 4632.
- 17 Turowski, P. N.; Armstrong, W. H.; Liu, S.; Brown, S. N.; Lippard, S. J. Inorg Chem 1994, 33, 636.
- 18 Kitajima, N.; Tamura, N.; Amagai, H.; Fukui, H.; Moro-oka, Y.; Mizutani, Y.; Kitagawa, T.; Mathur, R.; Heerwegh, K.; Reed, C. A.; Randall, C. R.; Que, L. J.; Tatsumi, K. J Am Chem Soc 1994, 116, 9071.
- 19 Olafson, B. D.; Goddard, W. A., III . Proc Natl Acad Sci USA 1977, 72, 1335.
- 20 Takano, Y.; Kubo, S.; Onishi, T.; Isobe, H.; Yoshioka, Y.; Yamaguchi, K. Chem Phys Lett 2001, 355, 395–403.
- 21 Yamaguchi, K. In Self-Consistent Field: Theory and Applications; R. Carbo; M. Klobukowski, Eds.; Elsevier Scientific Publishers: Amsterdam, Oxford, New York, Tokyo, 1990; p 727.
- 22 Yamaguchi, K.; Yabushita, S.; Fueno, T. J Chem Phys 1979, 71, 2321.
- 23
Yamaguchi, K.
J Mol Structure
1983, 103,
101.
10.1016/0166-1280(83)85012-X Google Scholar
- 24
Yamaguchi, K.;
Takahara, Y.;
Fueno, T. In
Applied Quantum Chemistry;
Smith, V. H., Jr.; Schaefer, H. F., III; Morokuma, K.; Reidel, S. Kluwer Academic Publishers:
Dordrecht,
1986; p
155.
10.1007/978-94-009-4746-7_11 Google Scholar
- 25 Yamaguchi, K.; Takada, K.; Otsuji, Y.; Mizuno, K. in Organic Peroxides, edited by W. Ando, John Wiley & Sons, 1992, p 1.
- 26 Yamaguchi, K.; Yabushita, S.; Fueno, T.; Kato, S.; Morokuma, K.; Iwata, S. Chem Phys Lett 1980, 71, 563.
- 27 Koizumi, K.; Shoji, M.; Nishiyama, Y.; Maruno, Y.; Kitagawa, Y.; Soda, K.; Yamanaka, S.; Okumura, M.; Yamaguchi, K. Int J Quantum Chem 2004, 100, in press.
- 28 Yamaguchi, K.; Nakano, M.; Namimoto, N.; Fueno, T. Jpn J Appl Phys 1988, 27, L1835.
- 29 Yamaguchi, K. Int J Quantum Chem 1990, 37, 167.
- 30 Yamaguchi, K.; Yamaki, D.; Kitagawa, Y.; Takahata, M.; Kawakami, T.; Ohsaku, T.; Nagao, H. Int J Quantum Chem 2003, 92, 47.
- 31 Kawakami, T.; Taniguchi, T.; Kitagawa, Y.; Takano, Y.; Nagao, H.; Yamaguchi, K. Mol Phys 2002, 100, 2641.
- 32 Kawakami, T.; Taniguchi, T.; Nakano, S.; Kitagawa, Y.; Yamaguchi, K. Polyhedron 2003, 22, 2051.
- 33 Nakano, S.; Kitagawa, Y.; Kawakami, T.; Yamaguchi, K. Polyhedron 2003, 22, 2027–2038.
- 34 Imada, M.; Fujimori, A.; Tokura, Y. Rev Mod Phys 1998, 70, 1040.
- 35 Yamaguchi, K. Chem Phys Lett 1979, 68, 477.
- 36 Yamaguchi, K. Chem Phys Lett 1975, 33, 330.
- 37 Yamaguchi, K. Chem Phys Lett 1975, 35(2), 230.
- 38 Isobe, H.; Takano, Y.; Kitagawa, Y.; Kawakami, T.; Yamanaka, S.; Yamaguchi, K.; Houk, K. N. Mol Phys 2002, 100, 717–727.
- 39 Isobe, H.; Takano, Y.; Kitagawa, Y.; Kawakami, T.; Yamanaka, S.; Yamaguchi, K.; Houk, K. N. J Phys Chem A 2003, 107(5), 682.
- 40 Becke, A. D. J Chem Phys 1993, 98, 5648.
- 41 Beck, A. D. Phys Rev A 1988, 38, 3098.
- 42 Lee, C.; Yang, W.; Parr, R. G. Phys Rev B 1988, 37, 785.
- 43 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Rega, N.; Salvador, P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian, 98, Revision A.11.3; Gaussian: Pittsburgh, 2002.
- 44 Hariharan, P. C.; Pople, J. A. Theo Chem Acta 1973, 28, 213.
- 45 Hehre, W. J.; Ditchdield, R.; Pople, J. A. J Chem Phys 1972, 56, 2257.
- 46 Huzinaga, S. Gaussian Basis Sets for Molecular Calculations; Elsevier: Amsterdam, Oxford, New York, Tokyo, 1984.
- 47 Hay, P. J. J Chem Phys 1977, 66, 4377.
- 48 Han, W. G.; Lovell, T.; Liu, T.; Noodleman, L. Inorg Chem 2003, 42, 2751.
- 49 Noodleman, L.; Case, D. A. Adv Inorg Chem 1992, 38, 423.
- 50 Ginsberg, A. P. J Am Chem Soc 1980, 102, 111.
- 51 Bencini, A.; Totti, F.; Daul, C. A.; Doclo, K.; Fantucci, P.; Barone, V. Inorg Chem 1997, 36, 5022.
- 52 Yamaguchi, K.; Fukui, H.; Fueno, T. Chem Lett 1986, 625.
- 53 Yamaguchi, K.; Tsunekawa, T.; Toyoda, Y.; Fueno, T. Chem Phys Lett 1988, 143, 371.
- 54 3D Search and Research using the Cambridge Structural Database. Allen, F. H., Kennard, O. Chemical Design Automation News 1993, 8, 31–37.
- 55 Armstrong, Q. H.; Spool, A.; Papaefthymiou, G. C.; Frankel, R. B.; Lippard, S. J. J Am Chem Soc 1984, 106, 3653.
- 56 Cohen, J. D.; Payne, S.; Hagen, K. S.; Sanders-Loehr, J. J Am Chem Soc 1997, 119, 2960.
- 57 Lachicotte, R.; Kitaygorodskiy, A.; Hagen, K. S. J Am Chem Soc 1993, 115, 8883.
- 58 Kitagawa, Y.; Soda, T.; Shigeta, Y.; Yamanaka, S.; Yoshioka, Y.; Yamaguchi, K. Int J Quantum Chem 2001, 84, 592.
- 59 Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem Phys Lett 1989, 159, 200.
- 60 Takeda, R.; Yamanaka, S.; Yamaguchi, K. Chem Phys Lett 2002, 366, 321.
- 61 Rodriguez, J. H.; McCusker, J. K. J Chem Phys 2002, 116, 6253.
- 62 Brunold, T. C.; Solomon, E. I. J Am Chem Soc 1999, 121, 8288.
- 63 Yamaguchi, K. Chem Phys 1978, 29, 117.
- 64 Takatsuka, K.; Yamaguchi, K.; Fueno, T. Theoret Chim Acta 1978, 48, 175.