The ability of the Gaussian-2, Gaussian-3, Complete Basis Set–QB3, and Complete Basis Set–APNO model chemistries to model the geometries of small water clusters
Meghan E. Dunn
Department of Chemistry, Hamilton College, 198 College Hill Road, Clinton, NY 13323
Search for more papers by this authorEmma K. Pokon
Department of Chemistry, Hamilton College, 198 College Hill Road, Clinton, NY 13323
Search for more papers by this authorCorresponding Author
George C. Shields
Department of Chemistry, Hamilton College, 198 College Hill Road, Clinton, NY 13323
Department of Chemistry, Hamilton College, 198 College Hill Road, Clinton, NY 13323Search for more papers by this authorMeghan E. Dunn
Department of Chemistry, Hamilton College, 198 College Hill Road, Clinton, NY 13323
Search for more papers by this authorEmma K. Pokon
Department of Chemistry, Hamilton College, 198 College Hill Road, Clinton, NY 13323
Search for more papers by this authorCorresponding Author
George C. Shields
Department of Chemistry, Hamilton College, 198 College Hill Road, Clinton, NY 13323
Department of Chemistry, Hamilton College, 198 College Hill Road, Clinton, NY 13323Search for more papers by this authorAbstract
The Gaussian-2, Gaussian-3, Complete Basis Set-QB3, and Complete Basis Set-APNO methods have been used to calculate geometries of neutral clusters of water, (H2O)n, where n = 2–6. The structures are in excellent agreement with those determined from experiment and those predicted from previous high-level calculations. These methods also provide excellent thermochemical predictions for water clusters, and thus can be used with confidence in evaluating the structures and thermochemistry of water clusters. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004
REFERENCES
- 1 Dyke, T. R.; Muenter, J. S. J Chem Phys 1972, 57, 5011–5012.
- 2 Xantheas, S. S.; Dunning, T. H. J Chem Phys 1993, 98, 8037–8040.
- 3 Kim, K.; Jordan, K. D.; Zwier, T. S. J Am Chem Soc 1994, 116, 11568–11569.
- 4 Kim, K.; Jordan, K. D. J Phys Chem 1994, 98, 10089–10094.
- 5 Xantheas, S. S. J Chem Phys 1994, 100, 7523–7534.
- 6 Xantheas, S. S. J Chem Phys 1995, 102, 4505–4517.
- 7 Pedulla, J. M.; Villa, F.; Jordan, K. D. J Chem Phys 1996, 105, 11091–11099.
- 8 Liu, K.; Brown, M. G.; Carter, C.; Saykally, R. J.; Gregory, J. K.; Clary, D. C. Nature 1996, 381, 501–503.
- 9 Gregory, J. K.; Clary, D. C.; Liu, K.; Brown, M. G.; Saykally, R. J. Science 1997, 275, 814–817.
- 10 Gregory, J. K.; Clary, D. C. J Phys Chem 1997, 101, 1089–5639.
- 11 Loerting, T.; Liedl, K. R.; Rode, B. M. J Chem Phys 1998, 109, 2672–2679.
- 12 Pedulla, J. M.; Kim, H.; Jordan, K. D. Chem Phys Lett 1998, 291, 78–84.
- 13 Nielsen, I. M. B.; Seidl, E. T.; Janssen, C. L. J Chem Phys 1999, 110, 9435–9442.
- 14 Nauta, K.; Miller, R. E. Science 2000, 287, 293–295.
- 15 Buck, U.; Huisken, F. Chem Rev 2000, 100, 3863–3890.
- 16 Keutsch, F.; Saykally, R. J Proc Natl Acad Sci 2001, 98, 10533–10540.
- 17
Ugalde, J. M.;
Alkorta, I.;
Elguero, J.
Angew Chem Int Ed
2000, 39,
717–721.
10.1002/(SICI)1521-3773(20000218)39:4<717::AID-ANIE717>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- 18 Lee, H. M.; Suh, S. B.; Lee, J. Y.; Tarakeshwar, P.; Kim, K. S. J Chem Phys 2000, 112, 9759–9772.
- 19 Morgenstern, K.; Rieder, K.-H. J Chem Phys 2002, 116, 5746–5752.
- 20 Doedens, R. J.; Yohannes, E.; Khan, M. I. Chem Commun 2002, 62–63.
- 21 Losada, M.; Leutwlyer, S. J Chem Phys 2002, 117, 2003–2016.
- 22 Burnham, C. J.; Xantheas, S. S.; Miller, M. A.; Applegate, B. E.; Miller, R. E. J Chem Phys 2002, 117, 1109–1122.
- 23 Xantheas, S. S.; Burnham, C. J.; Harrison, R. J. J Chem Phys 2002, 116, 1493–1499.
- 24 Keutsch, F. N.; Cruzan, J. D.; Saykally, R. J. Chem Rev 2003, 103, 2533–2577.
- 25 Yoskioki, S. J Mol Graphics Model 2003, 21, 487–498.
- 26 Dunn, M. E.; Pokon, E. K.; Shields, G. C. J Am Chem Soc 2004, 126, 2647–2653.
- 27 Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J Chem Phys 1991, 94, 7221–7230.
- 28 Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A. J Chem Phys 1998, 109, 7764–7776.
- 29 Montgomery, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. J Chem Phys 1999, 110, 2822–2827.
- 30 Ochterski, J. W.; Petersson, G. A.; Montgomery, J. A. J Chem Phys 1996, 104, 2598–2619.
- 31 Petersson, G. A.; Malick, D. K.; Wilson, W. G.; Ochterski, J. W.; Montgomery, J. A.; Frisch, M. J. J Chem Phys 1998, 109, 10570–10579.
- 32 Ochterski, J. W.; Petersson, G. A.; Wiberg, K. B. J Am Chem Soc 1995, 117, 11299–11308.
- 33 Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J Chem Phys 1997, 106, 1063–1079.
- 34 Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Pople, J. A. J Chem Phys 1998, 109, 42–55.
- 35 Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Kedziora, G. S.; Pople, J. A. J Phys Chem A 2001, 105, 227–228.
- 36 Toth, A. M.; Liptak, M. D.; Phillips, D. L.; Shields, G. C. J Chem Phys 2001, 114, 4595–4606.
- 37 Pokon, E. K.; Liptak, M. D.; Feldgus, S.; Shields, G. C. J Phys Chem A 2001, 105, 10483–10487.
- 38 Liptak, M. D.; Shields, G. C. J Am Chem Soc 2001, 123, 7314–7319.
- 39 Liptak, M. D.; Gross, K. C.; Seybold, P. G.; Feldgus, S.; Shields, G. C. J Am Chem Soc 2002, 124, 6421–6427.
- 40 Spartan version 5.1.3; Wavefunction, Inc.: Irvine, CA, 1998.
- 41 Stewart, J. J. P. J Comput Chem 1989, 10, 209–220, 221–264.
- 42 Cramer, C. J. Essentials of Computational Chemistry: Theories and Methods; Wiley: New York, 2002.
- 43 Montgomery, J. A.; Ochterski, J. W.; Petersson, G. A. J Chem Phys 1994, 101, 5900–5909.
- 44 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennuci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Rega, N.; Salvador, P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.11.3; Gaussian, Inc.: Pittsburgh, PA, 2002.
- 45 Jurema, M. W.; Shields, G. C. J Comput Chem 1993, 14, 89–104.
- 46 Jurema, M. W.; Kirschner, K. N.; Shields, G. C. J Comput Chem 1993, 14, 1326–1332.
- 47 Kirschner, K. N.; Shields, G. C. Int J Quantum Chem Quantum Chem Symp 1994, 28, 349–360.
- 48 Curtiss, L. A.; Frurip, D. J.; Blander, M. J Chem Phys 1979, 71, 2703–2711.