Theoretical study of adsorption of methyl tert-butyl ether on the substituted tetrahedral surface of dickite
A. Michalkova
Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 842 36 Bratislava, Slovak Republic
Computational Center for Molecular Structure and Interactions, Department of Chemistry, Jackson State University, 1400 Lynch Street, P.O. Box 17910, Jackson, Mississippi 39217, USA
Search for more papers by this authorL. Gorb
Computational Center for Molecular Structure and Interactions, Department of Chemistry, Jackson State University, 1400 Lynch Street, P.O. Box 17910, Jackson, Mississippi 39217, USA
Search for more papers by this authorO. A. Zhikol
Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Lenina Ave., 61001 Kharkov, Ukraine
Search for more papers by this authorCorresponding Author
J. Leszczynski
Computational Center for Molecular Structure and Interactions, Department of Chemistry, Jackson State University, 1400 Lynch Street, P.O. Box 17910, Jackson, Mississippi 39217, USA
Computational Center for Molecular Structure and Interactions, Department of Chemistry, Jackson State University, 1400 Lynch Street, P.O. Box 17910, Jackson, Mississippi 39217, USASearch for more papers by this authorA. Michalkova
Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 842 36 Bratislava, Slovak Republic
Computational Center for Molecular Structure and Interactions, Department of Chemistry, Jackson State University, 1400 Lynch Street, P.O. Box 17910, Jackson, Mississippi 39217, USA
Search for more papers by this authorL. Gorb
Computational Center for Molecular Structure and Interactions, Department of Chemistry, Jackson State University, 1400 Lynch Street, P.O. Box 17910, Jackson, Mississippi 39217, USA
Search for more papers by this authorO. A. Zhikol
Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Lenina Ave., 61001 Kharkov, Ukraine
Search for more papers by this authorCorresponding Author
J. Leszczynski
Computational Center for Molecular Structure and Interactions, Department of Chemistry, Jackson State University, 1400 Lynch Street, P.O. Box 17910, Jackson, Mississippi 39217, USA
Computational Center for Molecular Structure and Interactions, Department of Chemistry, Jackson State University, 1400 Lynch Street, P.O. Box 17910, Jackson, Mississippi 39217, USASearch for more papers by this authorAbstract
The adsorption of methyl tert-butyl ether (MTBE) on the substituted tetrahedral surface of dickite has been studied using the n-layered integrated molecular orbital and molecular mechanics (ONIOM) approach and Becke's three-parameter exchange functional and the gradient-corrected functional of Lee, Yang, and Paar (B3LYP)/6-31G(d):PM3 approximation. Two Si atoms of the tetrahedral side were substituted by Al atoms in three different mutual arrangements (1,2-, 1,3-, and 1,4-substitution). The negative charge of the layer originating from the substitution was compensated by the exchangeable Mg2+ cation. Initially the Mg2+ cation was placed above the center of the six-member ring with the tetrahedral structure of the mineral fragment. The Mg2+ cation plays a crucial role in the adsorption of MTBE on the substituted surface of dickite. Methyl tert-butyl ether is adsorbed due to the formation of a chemical bond between the oxygen atom of MTBE and the Mg2+ cation and due to the formation of multiple weak C-H…O hydrogen bonds between the C–H groups of MTBE and the surface oxygen atoms. The adsorption results in changes in the structural parameters of MTBE that are the most significant in the case of the 1,3-substituted system. The interaction energies of MTBE adsorbed on the substituted surface of dickite corrected by basis set superposition error were predicted. The values of adsorption energies range from −42.8 kcal/mol (1,2-substitution) to −45.9 kcal/mol (1,3-substitution) to −47.2 kcal/mol (1,4-substitution). © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004
REFERENCES
- 1 Chang, T. Y.; Hammerle, R. H.; Japar, S. M.; Salmeen, I. T. Environ Sci Technol 1991, 25, 1190.
- 2 Japar, S. M.; Wallington, T. J.; Rudy, S. J.; Cheng, T. Y. Environ Sci Technol 1991, 25, 415.
- 3 U. S. Environmental Protection Agency (EPA), http://www.epa.gov.
- 4 CAL-EPA, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, California, 1998.
- 5 Brown, S. L. Regul Toxicol Pharmacol 1997, 25, 256.
- 6 Mennear, J. H. Risk Anal 1997, 17, 673.
- 7 Secretary Scientific Advisory Board on Toxic Air Pollutants. Env Health Perspect 1995, 103, 420.
- 8 Strategic Environmental Research Development Program SERDP Information Bulletin, Vol. 1, 1999.
- 9 Newman, A. C. D. The Chemistry of Clays and Clay Minerals (Mineralogical Society Monograph No. 6); Longman Scientific & Technical: London, 1987.
- 10 Bailey, S. W. In Structures of Layered Silicates, Crystal Structures of Clay Minerals and Their X-ray Identification; G. W. Brindley; G. Brown, Eds.; Mineralogical Society: London, 1980; p 6–28.
- 11 Tunney, J. J.; Detellier, C. Chem Mater 1996, 8, 927.
- 12 Komori, Y.; Sugahara, Y.; Kuroda, K. J Mater Res 1998, 13, 930.
- 13 Guimaraes, J. L.; Peralta-Zamora, P.; Wypych, F. J Colloid Inter Sci 1998, 206, 261.
- 14 Ogawa, M.; Kuroda, K. Chem Rev 1995, 95, 399.
- 15 Benco, L.; Tunega, D.; Hafner, J.; Lischka, H. Am Mineral 2001, 86, 1057.
- 16 Nemecz, E. Clay Minerals; Akademiai Kiado: Budapest, 1981.
- 17 Akiba, E.; Hayakawa, H.; Hayashi, H.; Miyawaki, R.; Tomura, S.; Shibasaki, Y.; Izumi, F.; Asano, H.; Kamiyama, T. Clays Clay Miner 1997, 45, 781.
- 18 Mitani, M. M.; Keller, A. A.; Golden, S. J.; Hatfield, R.; Cheetham, A. K. Appl Catal B Environ 2001, 888, 1.
- 19 Suenram, R. D.; Lovas, F. J.; Pereyra, W.; Fraser, G. T.; High Walker, A. R. J Molec Spectr 1997, 181, 67.
- 20 Suwa, A.; Ohta, H.; Konaka, S. J Mol Struct 1988, 172, 275.
- 21 Konaka, S.; Takeuchi, H.; Siam, K.; Ewbank, J. D.; Schäfer, L. J Mol Struct 1990, 222, 503.
- 22 Gregerson, L. N.; Siegel, J. S.; Balridge, K. K. J Phys Chem A 2000, 104, 11106.
- 23 Liedle, S.; Mack, H.-G.; Oberhammer, H. J Mol Struct 1998, 198, 1.
- 24 Haubein, N. C.; Broadbelt, L. J. Ind Eng Chem Res 2004, 43, 18.
- 25 Chu, P.; Kuhl, G. H. Ind Eng Chem Res 1987, 26, 365.
- 26 Kogelbauer, A.; Ocal, M.; Nikolopoulos, A. A.; Goodwin, J. G., Jr; Marcelin, G. J Catal 1994, 148, 157.
- 27 Nikolopoulos, A. A.; Kogelbauer, A.; Goodwin, J. G., Jr; Marcelin, G. Appl Catal 1994, 119, 69.
- 28 Ahmed, S.; El-Faer, M. Z.; Abdillahi, M. M.; Shirokoff, J.; Siddiqui, M. A. B.; Barri, S. A. I. Appl Catal A 1997, 161, 47.
- 29 Mirth, G.; Lercher, J. A. In Natural Gas Conversion; Holmen A., Eds.; Elsevier: Amsterdam, 1991; p 437.
- 30 Mirth, G.; Lercher, J. A.; Anderson, M. W.; Klonowski, J. J Chem Faraday Trans 1990, 86, 3039.
- 31 Kogelbauer, A.; Lercher, J. A. J Chem Soc Faraday Trans 1992, 88, 2283.
- 32 Aronson, M. T.; Gorte, R. J.; Farneth, W. E. J Catal 1986, 98, 434.
- 33 Li, S.; Tuan, V. A.; Noble, R. D.; Falconer, J. L. Environ Sci Technol 2003, 37, 4007.
- 34 Kogelbauer, A.; Nikolopoulus, A. A.; Goodwin, J. G., Jr; Marcelin, G. J Catal 1995, 152, 122.
- 35 Andreson, M. A. Environ Sci Technol 2000, 34, 725.
- 36 Michalkova, A.; Gorb, L.; Leszczysnki, J. (to appear).
- 37 Svensson, M.; Humbel, S.; Froese, R. D. J.; Matsubara, T.; Sieber, S.; Morokuma, K. J Phys Chem 1996, 100, 19357.
- 38 Frish, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, V. G.; Zakrzewski, V. G.; Montgomery, J. A., Jr; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millan, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.7; Gaussian: Pittsburgh, 1998.
- 39 Becke, D. J Chem Phys 1993, 98, 5648.
- 40 Lee, C.; Yang, W.; Parr, R. G. Phys Rev 1998, B37, 785.
- 41 Stewart, J. P. J Comp Chem 1989, 10, 209.
- 42 Stewart, J. P. J Comp Chem 1989, 10, 221.
- 43 Joswig, W.; Drits, V. A. N. Jb Miner Mh 1986, 19, 1986.
- 44 http://www.ch.ic.ac.uk/vchemlib/course/zeolite/structure.html.
- 45 Stebbins, J. F.; Zhao, P.; Lee S. K.; Cheng, X. Am Mineral 1999, 84, 1680.
- 46 Boys, S. F.; Bernardi, F. Mol Phys 1970, 19, 553.
- 47
Bader, R. W. F.
Atoms in Molecules: A Quantum Theory;
Oxford University Press:
Oxford,
1990.
10.1093/oso/9780198551683.001.0001 Google Scholar
- 48 http://www.cscs.ch/molekel/before_download.html.
- 49 Sokalski, W. A.; Roszak, S.; Pecul, K. Chem Phys Lett 1988, 153.
- 50 Jeziorski, B.; van Hemert, M. C. Mol Phys 1976, 31, 713.
- 51 Chalasinski, G.; Szczesniak, M. M. Mol Phys 1988, 63, 205.
- 52 Gorb, L.; Gu, J.; Leszczynska, D.; Leszczynski, J. Phys Chem Chem Phys 2000, 2, 5007.
- 53 Michalkova, A.; Tunega, D.; Turi Nagy, L. J Mol Struct (THEOCHEM) 2002, 581, 37.
- 54 Koch, U.; Popelier, P. L. A. J Phys Chem 1995, 99, 9747.
- 55 Tunega, D.; Haberhauer, G.; Gerzabek, M. H.; Lischka, H. Langmuir 2002, 18, 139.