Theoretical studies on effective exchange integrals using spin correlation function analysis and magnetic effective density functional (MEDF) method
Corresponding Author
Y. Kitagawa
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, JapanSearch for more papers by this authorS. Yamanaka
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorR. Takeda
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorM. Shoji
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorK. Koizumi
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorY. Nishiyama
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorY. Maruno
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorT. Kawakami
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorM. Okumura
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorK. Yamaguchi
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorCorresponding Author
Y. Kitagawa
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, JapanSearch for more papers by this authorS. Yamanaka
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorR. Takeda
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorM. Shoji
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorK. Koizumi
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorY. Nishiyama
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorY. Maruno
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorT. Kawakami
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorM. Okumura
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorK. Yamaguchi
Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Search for more papers by this authorAbstract
New schemes for effective exchange integrals (Jab) and approximate spin-projected energies for low spin states (EAPLS) were examined on simple two-site radical models. These schemes are based on Hubbard model and include ionic term in wavefunction. By estimation of expectation values of spin correlation function, those schemes could directly calculate Jab and EAPLS values without the approximation that on-site spins for high-spin (HS) state was equivalent to one of low-spin (LS) state. Calculated Jab values by new scheme were larger than conventional ones in short spin–spin distance, suggesting an importance of the on-site spins and ionic term. On the other hand, new EAPLS values were similar to conventional ones. Estimation methods for new Jab and EAPLS also were derived by using HS state energy, LS state energy, and 〈Ŝ2〉LS analytically. To correct dynamical correlation, magnetic effective density functional (MEDF) method was successfully applied to calculate new Jab and EAPLS. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004
REFERENCES
- 1 D. Gatteschi; O. Kahn; J. S. Miller; F. Palacio, Eds. Magnetic Molecular Materials; NATO ASI Series No. 198; Kluwer Academic Pub: Boston, 1991.
- 2
J. S. Miller;
M. Drillon, Eds.
Magnetism: Molecules to Materials;
Wiley VCH:
2001.
10.1002/3527600140 Google Scholar
- 3 A. Nakamura; N. Ueyama; K. Yamaguchi, Eds. Organometallic Conjugation: Springer Series in Chemical Physics 73; KODANSHA Springer: Tokyo, 2002.
- 4 Isobe, H.; Takano, Y.; Kitagawa, Y.; Kawakami, T.; Yamanaka, S.; Yamaguchi, K.; Houk, K. N. J Phys Chem A 2003, 107, 682.
- 5 M. M. Turnbull; T. Sugimoto; L. K. Thompson, Eds. Molecular-Based Magnetic Materials: ACS Symposium Series No. 644; American Chemical Society: Washington D. C., 1995; Chapter 3.
- 6 Yamaguchi, K.; Kawakami, T.; Takano, Y.; Kitagawa, Y.; Yamashita, Y.; Fujita, H. Int J Quantum Chem 2002, 90, 370.
- 7 Ginsberg, A. P. J Am Chem Soc 1980, 102, 111.
- 8 Noodleman, L.; Davidson, E. R. Chem Phys 1986, 109, 131.
- 9 Bencini, A.; Totti, F.; Doul, C. A.; Doclo, K.; Fantucci, P.; Barone, V. Inorganic Chem 1997, 36, 5022.
- 10 Ruiz, E.; Cano, J.; Alvarez, S.; Alemany, P. J Comput Chem 1999, 20, 1391.
- 11
Yamaguchi, K.;
Takahara, Y.;
Fueno, T.
Applied Quantum Chemistry;
V. H. Smith;
H. F. Schaefer;
K Morokuma.
Kluwer Academic Pub:
Boston,
1986; p
155.
10.1007/978-94-009-4746-7_11 Google Scholar
- 12 Yamaguchi, K.; Jensen, F.; Dorigo, A.; Houk, K. N. Chem Phys Lett 1988, 149, 537.
- 13 Soda, T.; Kitagawa, Y.; Onishi, T.; Takano, Y.; Shigeta, Y.; Nagao, H.; Yoshioka, Y.; Yamaguchi, K. Chem Phys Lett 2000, 319, 223.
- 14 Yamanaka, S.; Takeda, R.; Kawakami, T.; Nakano, S.; Yamaki, D.; Yamada, S.; Nakata, K.; Sakuma, T.; Takada, T.; Yamaguchi, K. Int J Quant Chem 2003, 95, 512.
- 15 Yamanaka, S. (to appear).
- 16 Kitagawa, Y.; Kawakami, T.; Yamaguchi, K. Mol Phys 2002, 100, 1829.
- 17 Kitagawa, Y.; Soda, T.; Shigeta, Y.; Yamanaka, S.; Yoshioka, Y.; Yamaguchi, K. Int J Quantum Chem 2001, 84, 592.
- 18
Yamanaka, S.;
Okumura, M.;
Nakano, M.;
Yamaguchi, K.
J Mol Struct (Theochem)
1994, 310,
205.
10.1016/S0166-1280(09)80099-7 Google Scholar
- 19 We used Yamanaka's handmade programs to calculate 〈Ŝa · Ŝb〉 values.
- 20 Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford: Clarendon, 1989.
- 21 Nagy, Á. Phys Rep 1998, 298, 1.
- 22 Leininger, T.; Stoll, H.; Werner, H.-J.; Savin, A. Chem Phys Lett 1997, 275, 151.
- 23 Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. J Chem Phys 2001, 115, 3540.
- 24 Becke, A. D. J Chem Phys 1993, 98, 5648.
- 25 Becke, A. D. J Chem Phys 1993, 98, 1372.
- 26 Slater, J. C. In Quantum Theory of Molecular and Solids, Volume 4: The Self-Consistent Field for Molecular and Solids; McGraw-Hill: New York, 1974.
- 27 Becke, A. D. Phys Rev A 1988, 38, 3098.
- 28 Vosko, S. H.; Wilk, L.; Nusair, M. Can J Phys 1980, 58, 1200.
- 29 Lee, C.; Yang, W.; Parr, R. G. Phys Rev B 1988, 37, 785.
- 30 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Pittsburgh, 1998.
- 31 Kawakami, T.; Taniguchi, T.; Kitagawa, Y.; Takano, Y.; Nagao, H.; Yamaguchi, K. Mol Phys 2002, 100, 2641.
- 32 Kitagawa, Y.; Soda, T.; Onishi, T.; Takano, Y.; Nishino, M.; Yoshioka, Y.; Yamaguchi, K. Mol Cryst Liq Cryst 2000, 343, 463.
- 33 Kitagawa, Y.; Nakano, S.; Kawakami, T.; Mashima, K.; Tani, K.; Yamaguchi, K. Mol Cryst Liq Cryst 2002, 379, 525.
- 34 Nakano, S.; Kitagawa, Y.; Kawakami, T.; Yamaguchi, K. Polyhedron 2003, 22, 2027.
- 35 Kitagawa, Y.; Kawakami, T.; Yoshioka, Y.; Yamaguchi, K. Polyhedron 2001, 20, 1189.
- 36 Kitagawa, Y.; Nakano, S.; Kawakami, T.; Mashima, K.; Yamaguchi, K. Polyhedron 2003, 22, 2019.