A comprehensive review of the therapeutic potential of curcumin nanoformulations
Corresponding Author
Khadijeh Khezri
Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
Correspondence
Khadijeh Khezri, Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran.
Email: [email protected]
Majid Saeedi, Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Majid Saeedi
Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
Correspondence
Khadijeh Khezri, Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran.
Email: [email protected]
Majid Saeedi, Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
Email: [email protected]
Search for more papers by this authorHassan Mohammadamini
Khoy University of Medical Sciences, Khoy, Iran
Search for more papers by this authorAbbas Seyed Zakaryaei
Urmia University of Medical Sciences, Urmia, Iran
Search for more papers by this authorCorresponding Author
Khadijeh Khezri
Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
Correspondence
Khadijeh Khezri, Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran.
Email: [email protected]
Majid Saeedi, Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Majid Saeedi
Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
Correspondence
Khadijeh Khezri, Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran.
Email: [email protected]
Majid Saeedi, Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
Email: [email protected]
Search for more papers by this authorHassan Mohammadamini
Khoy University of Medical Sciences, Khoy, Iran
Search for more papers by this authorAbbas Seyed Zakaryaei
Urmia University of Medical Sciences, Urmia, Iran
Search for more papers by this authorAbstract
Today, due to the prevalence of various diseases such as the novel coronavirus (SARS-CoV-2), diabetes, central nervous system diseases, cancer, cardiovascular disorders, and so on, extensive studies have been conducted on therapeutic properties of natural and synthetic agents. A literature review on herbal medicine and commercial products in the global market showed that curcumin (Cur) has many therapeutic benefits compared to other natural ingredients. Despite the unique properties of Cur, its use in clinical trials is very limited. The poor biopharmaceutical properties of Cur such as short half-life in plasma, low bioavailability, poor absorption, rapid metabolism, very low solubility (at acidic and physiological pH), and the chemical instability in body fluids are major concerns associated with the clinical applications of Cur. Recently, nanoformulations are emerging as approaches to develop and improve the therapeutic efficacy of various drugs. Many studies have shown that Cur nanoformulations have tremendous therapeutic potential against various diseases such as SARS-CoV-2, cancer, inflammatory, osteoporosis, and so on. These nanoformulations can inhibit many diseases through several cellular and molecular mechanisms. However, successful long-term clinical results are required to confirm their safety and clinical efficacy. The present review aims to update and explain the therapeutic potential of Cur nanoformulations.
CONFLICT OF INTEREST
Authors declare that there is no conflict of interest in this study.
Open Research
DATA AVAILABILITY STATEMENT
The data for this study can be requested from the corresponding author via email.
REFERENCES
- Abdolahi, M., Jafarieh, A., Sarraf, P., Sedighiyan, M., Yousefi, A., Tafakhori, A., … Djalali, M. (2019). The neuromodulatory effects of ω-3 fatty acids and nano-curcumin on the COX-2/iNOS network in migraines: A clinical trial study from gene expression to clinical symptoms. Endocrine, Metabolic & Immune Disorders-Drug Targets, 19(6), 874–884.
- Abdolahi, M., Tafakhori, A., Togha, M., Okhovat, A. A., Siassi, F., Eshraghian, M. R., … Djalali, M. (2017). The synergistic effects of ω-3 fatty acids and nano-curcumin supplementation on tumor necrosis factor (TNF)-α gene expression and serum level in migraine patients. Immunogenetics, 69(6), 371–378.
- Aboali, F. A., Habib, D. A., Elbedaiwy, H. M., & Farid, R. M. (2020). Curcumin-loaded Proniosomal gel as a Biofreindly alternative for treatment of ocular inflammation: In-vitro and in-vivo assessment. International Journal of Pharmaceutics, 589, 119835.
- Abu-Taweel, G. M., Attia, M. F., Hussein, J., Mekawi, E. M., Galal, H. M., Ahmed, E. I., … El-Naggar, M. E. (2020). Curcumin nanoparticles have potential antioxidant effect and restore tetrahydrobiopterin levels in experimental diabetes. Biomedicine & Pharmacotherapy, 131, 110688.
- Adahoun, M. A. A., Al-Akhras, M.-A. H., Jaafar, M. S., & Bououdina, M. (2017). Enhanced anti-cancer and antimicrobial activities of curcumin nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 45(1), 98–107.
- Adusumilli, N. C., Mordorski, B., Nosanchuk, J., Friedman, J. M., & Friedman, A. J. (2021). Curcumin nanoparticles as a photoprotective adjuvant. Experimental Dermatology, 30, 705–709.
- Afshar, A., Aliaghaei, A., Nazarian, H., Abbaszadeh, H.-A., Naserzadeh, P., Fathabadi, F. F., … Norouzian, M. (2021). Curcumin-loaded Iron particle improvement of spermatogenesis in azoospermic mouse induced by long-term scrotal hyperthermia. Reproductive Sciences, 28(2), 371–380.
- Agarwal, N. B., Jain, S., Nagpal, D., Agarwal, N. K., Mediratta, P. K., & Sharma, K. K. (2013). Liposomal formulation of curcumin attenuates seizures in different experimental models of epilepsy in mice. Fundamental & Clinical Pharmacology, 27(2), 169–172.
- Agarwal, Y., Rajinikanth, P., Ranjan, S., Tiwari, U., Balasubramnaiam, J., Pandey, P., … Deepak, P. (2021). Curcumin loaded polycaprolactone−/polyvinyl alcohol-silk fibroin based electrospun nanofibrous mat for rapid healing of diabetic wound: An in-vitro and in-vivo studies. International Journal of Biological Macromolecules, 176, 376–386.
- Agel, M. R., Baghdan, E., Pinnapireddy, S. R., Lehmann, J., Schäfer, J., & Bakowsky, U. (2019). Curcumin loaded nanoparticles as efficient photoactive formulations against gram-positive and gram-negative bacteria. Colloids and Surfaces B: Biointerfaces, 178, 460–468.
- Agrahari, V., & Agrahari, V. (2018). Facilitating the translation of nanomedicines to a clinical product: Challenges and opportunities. Drug Discovery Today, 23(5), 974–991.
- Aguzzi, A., & O'connor, T. (2010). Protein aggregation diseases: Pathogenicity and therapeutic perspectives. Nature Reviews Drug Discovery, 9(3), 237–248.
- Ahmad, N., Ahmad, R., Ahmad, F. J., Ahmad, W., Alam, M. A., Amir, M., & Ali, A. (2020). Poloxamer-chitosan-based Naringenin nanoformulation used in brain targeting for the treatment of cerebral ischemia. Saudi Journal of Biological Sciences, 27(1), 500–517.
- Ahmad, N., Umar, S., Ashafaq, M., Akhtar, M., Iqbal, Z., Samim, M., & Ahmad, F. J. (2013). A comparative study of PNIPAM nanoparticles of curcumin, demethoxycurcumin, and bisdemethoxycurcumin and their effects on oxidative stress markers in experimental stroke. Protoplasma, 250(6), 1327–1338.
- Ahmadi, M., Agah, E., Nafissi, S., Jaafari, M. R., Harirchian, M. H., Sarraf, P., … Aghamollaii, V. (2018). Safety and efficacy of nanocurcumin as add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: A pilot randomized clinical trial. Neurotherapeutics, 15(2), 430–438.
- Ahn, J., Jeong, J., Lee, H., Sung, M.-J., Jung, C. H., Lee, H., … Ha, T. Y. (2017). Poly (lactic-co-glycolic acid) nanoparticles potentiate the protective effect of curcumin against bone loss in ovariectomized rats. Journal of Biomedical Nanotechnology, 13(6), 688–698.
- Ahsan, H., Ahad, A., Iqbal, J., & Siddiqui, W. A. (2014). Pharmacological potential of tocotrienols: A review. Nutrition & Metabolism, 11(1), 1–22.
- Akhtar, F., Rizvi, M. M. A., & Kar, S. K. (2012). Oral delivery of curcumin bound to chitosan nanoparticles cured Plasmodium yoelii infected mice. Biotechnology Advances, 30(1), 310–320.
- Al Moubarak, A., El Joumaa, M., Slika, L., Patra, D., & Borjac, J. (2021). Curcumin-Polyallyhydrocarbon Nanocapsules potently suppress 1, 2-Dimethylhydrazine-induced colorectal Cancer in mice by inhibiting Wnt/β-catenin pathway. BioNanoScience, 11, 518–525.
- Alhusaini, A., Fadda, L., Hassan, I., Ali, H. M., Alsaadan, N., Aldowsari, N., … Alharbi, B. (2018). Liposomal curcumin attenuates the incidence of oxidative stress, inflammation, and DNA damage induced by copper sulfate in rat liver. Dose-Response, 16(3), 1559325818790869.
- Alihosseini, F., Azarmi, S., Ghaffari, S., Haghighat, S., & Sorkhabadi, S. M. R. (2016). Synergic antibacterial effect of curcumin with ampicillin; free drug solutions in comparison with SLN dispersions. Advanced Pharmaceutical Bulletin, 6(3), 461–465.
- Alippilakkotte, S., & Sreejith, L. (2018). Pectin mediated synthesis of curcumin loaded poly (lactic acid) nanocapsules for cancer treatment. Journal of Drug Delivery Science and Technology, 48, 66–74.
- Alotaibi, B., Tousson, E., El-Masry, T. A., Altwaijry, N., & Saleh, A. (2021). Ehrlich ascites carcinoma as model for studying the cardiac protective effects of curcumin nanoparticles against cardiac damage in female mice. Environmental Toxicology, 36(1), 105–113.
- Alqahtani, M. S., Alqahtani, A., Kazi, M., Ahmad, M. Z., Alahmari, A., Alsenaidy, M. A., & Syed, R. (2020). Wound-healing potential of curcumin loaded lignin nanoparticles. Journal of Drug Delivery Science and Technology, 60, 102020.
- Altunay, N., Elik, A., & Gürkan, R. (2020). Preparation and application of alcohol based deep eutectic solvents for extraction of curcumin in food samples prior to its spectrophotometric determination. Food Chemistry, 310, 125933.
- Alyoussef, A., El-Gogary, R. I., Ahmed, R. F., Farid, O. A. A., Bakeer, R. M., & Nasr, M. (2021). The beneficial activity of curcumin and resveratrol loaded in nanoemulgel for healing of burn-induced wounds. Journal of Drug Delivery Science and Technology, 62, 102360.
- Amrouche, T., Noll, K. S., Wang, Y., Huang, Q., & Chikindas, M. L. (2010). Antibacterial activity of subtilosin alone and combined with curcumin, poly-lysine and zinc lactate against Listeria monocytogenes strains. Probiotics and Antimicrobial Proteins, 2(4), 250–257.
- Andrabi, S. M., Majumder, S., Gupta, K. C., & Kumar, A. (2020). Dextran based amphiphilic nano-hybrid hydrogel system incorporated with curcumin and cerium oxide nanoparticles for wound healing. Colloids and Surfaces B: Biointerfaces, 195, 111263.
- Andrew, R., & Izzo, A. A. (2017). Principles of pharmacological research of nutraceuticals. Hoboken, NJ: Wiley Online Library.
10.1111/bph.13779 Google Scholar
- Antony, B., Merina, B., Iyer, V., Judy, N., Lennertz, K., & Joyal, S. (2008). A pilot cross-over study to evaluate human oral bioavailability of BCM-95® CG (Biocurcumax™), a novel bioenhanced preparation of curcumin. Indian Journal of Pharmaceutical Sciences, 70(4), 445–449.
- Araiza-Calahorra, A., Akhtar, M., & Sarkar, A. (2018). Recent advances in emulsion-based delivery approaches for curcumin: From encapsulation to bioaccessibility. Trends in Food Science & Technology, 71, 155–169.
- Arora, R., Kuhad, A., Kaur, I., & Chopra, K. (2015). Curcumin loaded solid lipid nanoparticles ameliorate adjuvant-induced arthritis in rats. European Journal of Pain, 19(7), 940–952.
- Arya, G., Das, M., & Sahoo, S. K. (2018). Evaluation of curcumin loaded chitosan/PEG blended PLGA nanoparticles for effective treatment of pancreatic cancer. Biomedicine & Pharmacotherapy, 102, 555–566.
- Asher, G. N., Xie, Y., Moaddel, R., Sanghvi, M., Dossou, K. S., Kashuba, A. D., … Hawke, R. L. (2017). Randomized pharmacokinetic crossover study comparing 2 curcumin preparations in plasma and rectal tissue of healthy human volunteers. The Journal of Clinical Pharmacology, 57(2), 185–193.
- Ashkbar, A., Rezaei, F., Attari, F., & Ashkevarian, S. (2020). Treatment of breast cancer in vivo by dual photodynamic and photothermal approaches with the aid of curcumin photosensitizer and magnetic nanoparticles. Scientific Reports, 10(1), 1–12.
- Azandeh, S. S., Abbaspour, M., Khodadadi, A., Khorsandi, L., Orazizadeh, M., & Heidari-Moghadam, A. (2017). Anticancer activity of curcumin-loaded PLGA nanoparticles on PC3 prostate cancer cells. Iranian Journal of Pharmaceutical Research, 16(3), 868–879.
- Bagheri, M., Fens, M. H., Kleijn, T. G., Capomaccio, R. B., Mehn, D., Krawczyk, P. M., … van Kronenburg, N. C. (2021). In vitro and in vivo studies on HPMA-based polymeric micelles loaded with Curcumin. Molecular Pharmaceutics, 18, 1247–1263.
- Ban, C., Jo, M., Park, Y. H., Kim, J. H., Han, J. Y., Lee, K. W., … Choi, Y. J. (2020). Enhancing the oral bioavailability of curcumin using solid lipid nanoparticles. Food Chemistry, 302, 125328.
- Bapat, P., Ghadi, R., Chaudhari, D., Katiyar, S. S., & Jain, S. (2019). Tocophersolan stabilized lipid nanocapsules with high drug loading to improve the permeability and oral bioavailability of curcumin. International Journal of Pharmaceutics, 560, 219–227.
- Barbara, R., Belletti, D., Pederzoli, F., Masoni, M., Keller, J., Ballestrazzi, A., … Grabrucker, A. M. (2017). Novel Curcumin loaded nanoparticles engineered for blood-brain barrier crossing and able to disrupt Abeta aggregates. International Journal of Pharmaceutics, 526(1–2), 413–424.
- Basit, H. M., Mohd Amin, M. C. I., Ng, S.-F., Katas, H., Shah, S. U., & Khan, N. R. (2020). Formulation and evaluation of microwave-modified chitosan-Curcumin nanoparticles—A promising Nanomaterials platform for skin tissue regeneration applications following burn wounds. Polymers, 12(11), 2608.
- Basniwal, R. K., Buttar, H. S., Jain, V., & Jain, N. (2011). Curcumin nanoparticles: Preparation, characterization, and antimicrobial study. Journal of Agricultural and Food Chemistry, 59(5), 2056–2061.
- Beloqui, A., Memvanga, P. B., Coco, R., Reimondez-Troitino, S., Alhouayek, M., Muccioli, G. G., … Préat, V. (2016). A comparative study of curcumin-loaded lipid-based nanocarriers in the treatment of inflammatory bowel disease. Colloids and Surfaces B: Biointerfaces, 143, 327–335.
- Berner, M. D., Sura, M. E., Alves, B. N., & Hunter, K. W., Jr. (2005). IFN-γ primes macrophages for enhanced TNF-α expression in response to stimulatory and non-stimulatory amounts of microparticulate β-glucan. Immunology Letters, 98(1), 115–122.
- Bhuiyan, F. R., Howlader, S., Raihan, T., & Hasan, M. (2020). Plants metabolites: Possibility of natural therapeutics against the COVID-19 pandemic. Frontiers in Medicine, 7, 444.
- Bhutta, Z. A., Ashar, A., Mahfooz, A., Khan, J. A., Saleem, M. I., Rashid, A., … Shoaib, M. (2021). Enhanced wound healing activity of nano ZnO and nano Curcuma longa in third-degree burn. Applied Nanoscience, 11, 1267–1278.
- Boarescu, P.-M., Chirilă, I., Bulboacă, A. E., Bocșan, I. C., Pop, R. M., Gheban, D., & Bolboacă, S. D. (2019). Effects of curcumin nanoparticles in isoproterenol-induced myocardial infarction. Oxidative Medicine and Cellular Longevity, 2019, 1–13.
- Bocate, K. P., Reis, G. F., de Souza, P. C., Junior, A. G. O., Durán, N., Nakazato, G., … Panagio, L. A. (2019). Antifungal activity of silver nanoparticles and simvastatin against toxigenic species of Aspergillus. International Journal of Food Microbiology, 291, 79–86.
- Bollimpelli, V. S., Kumar, P., Kumari, S., & Kondapi, A. K. (2016). Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity. Neurochemistry International, 95, 37–45.
- Bonfim, C. M. d., Monteleoni, L. F., Calmon, M. d. F., Cândido, N. M., Provazzi, P. J. S., Lino, V. d. S., … Quintana, S. M. (2020). Antiviral activity of curcumin-nanoemulsion associated with photodynamic therapy in vulvar cell lines transducing different variants of HPV-16. Artificial Cells, Nanomedicine, and Biotechnology, 48(1), 515–524.
- Brasch, J., Beck-Jendroschek, V., Walther, G., & Rubbel, D. (2020). Clinical isolates of Trichophyton rubrum are completely inhibited by photochemical treatment with a γ-cyclodextrin formulation of curcuminoids. Mycoses, 63(4), 369–375.
- Briot, K., Geusens, P., Bultink, I. E., Lems, W., & Roux, C. (2017). Inflammatory diseases and bone fragility. Osteoporosis International, 28(12), 3301–3314.
- Briskey, D., Sax, A., Mallard, A., & Rao, A. (2019). Increased bioavailability of curcumin using a novel dispersion technology system (LipiSperse®). European Journal of Nutrition, 58(5), 2087–2097.
- Brownlee, W. J., Hardy, T. A., Fazekas, F., & Miller, D. H. (2017). Diagnosis of multiple sclerosis: Progress and challenges. The Lancet, 389(10076), 1336–1346.
- Bugli, F., Cacaci, M., Palmieri, V., Di Santo, R., Torelli, R., Ciasca, G., … Sanguinetti, M. (2018). Curcumin-loaded graphene oxide flakes as an effective antibacterial system against methicillin-resistant Staphylococcus aureus. Interface Focus, 8(3), 20170059.
- Bulboacă, A. E., Bolboacă, S. D., Bulboacă, A. C., Porfire, A. S., Tefas, L. R., Suciu, Ş. M., … Stănescu, I. C. (2019). Liposomal curcumin enhances the effect of naproxen in a rat model of migraine. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 25, 5087–5097.
- Bulboacă, A. E., Bolboacă, S. D., Stănescu, I. C., Sfrângeu, C. A., Porfire, A., Tefas, L., & Bulboacă, A. C. (2018). The effect of intravenous administration of liposomal curcumin in addition to sumatriptan treatment in an experimental migraine model in rats. International Journal of Nanomedicine, 13, 3093–3103.
- Busari, Z. A., Dauda, K. A., Morenikeji, O. A., Afolayan, F., Oyeyemi, O. T., Meena, J., … Panda, A. K. (2017). Antiplasmodial activity and toxicological assessment of curcumin PLGA-encapsulated nanoparticles. Frontiers in Pharmacology, 8, 622.
- Chaniyilparampu, R. N., Nair, A. K., Parthasarathy, K., Gokaraju, G. R., Gokaraju, R. R., Bhuphatiraju, K., … Somashekara, N. (2014). Curcuminoids and its metabolites for the application in allergic ocular/nasal conditions. Google Patents.
- Chaubey, P., Mishra, B., Mudavath, S. L., Patel, R. R., Chaurasia, S., Sundar, S., … Monteiro, M. (2018). Mannose-conjugated curcumin-chitosan nanoparticles: Efficacy and toxicity assessments against Leishmania donovani. International Journal of Biological Macromolecules, 111, 109–120.
- Chauhan, S., Jaggi, M., & Yallapu, M. M. (2017). Magnetic nanoparticle formulations, methods for making such formulations, and methods for their use. Google Patents.
- Chegeni, M., Rozbahani, Z. S., Ghasemian, M., & Mehri, M. (2020). Synthesis and application of the calcium alginate/SWCNT-Gl as a bio-nanocomposite for the curcumin delivery. International Journal of Biological Macromolecules, 156, 504–513.
- Chen, P., Zhang, H., Cheng, S., Zhai, G., & Shen, C. (2016). Development of curcumin loaded nanostructured lipid carrier based thermosensitive in situ gel for dermal delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 506, 356–362.
- Chen, X.-P., Li, Y., Zhang, Y., & Li, G.-W. (2019). Formulation, characterization and evaluation of Curcumin-loaded PLGA-TPGS nanoparticles for liver Cancer treatment. Drug Design, Development and Therapy, 13, 3569–3578.
- Chen, Y., Lu, Y., Lee, R. J., & Xiang, G. (2020). Nano encapsulated curcumin: And its potential for biomedical applications. International Journal of Nanomedicine, 15, 3099–3120.
- Cheng, C.-S., Liu, T.-P., Chien, F.-C., Mou, C.-Y., Wu, S.-H., & Chen, Y.-P. (2019). Codelivery of plasmid and curcumin with mesoporous silica nanoparticles for promoting neurite outgrowth. ACS Applied Materials & Interfaces, 11(17), 15322–15331.
- Cheng, Y.-H., Ko, Y.-C., Chang, Y.-F., Huang, S.-H., & Liu, C. J.-L. (2019). Thermosensitive chitosan-gelatin-based hydrogel containing curcumin-loaded nanoparticles and latanoprost as a dual-drug delivery system for glaucoma treatment. Experimental Eye Research, 179, 179–187.
- Chiaoprakobkij, N., Suwanmajo, T., Sanchavanakit, N., & Phisalaphong, M. (2020). Curcumin-loaded bacterial cellulose/alginate/gelatin as a multifunctional biopolymer composite film. Molecules, 25(17), 3800.
- Chibhabha, F., Yang, Y., Ying, K., Jia, F., Zhang, Q., Ullah, S., … Li, F. (2020). Non-invasive optical imaging of retinal Aβ plaques using curcumin loaded polymeric micelles in APP swe/PS1 ΔE9 transgenic mice for the diagnosis of Alzheimer's disease. Journal of Materials Chemistry B, 8(33), 7438–7452.
- Ciofu, O., Rojo-Molinero, E., Macià, M. D., & Oliver, A. (2017). Antibiotic treatment of biofilm infections. APMIS, 125(4), 304–319.
- Clinton, A., & Carter, T. (2015). Chronic wound biofilms: Pathogenesis and potential therapies. Laboratory Medicine, 46(4), 277–284.
- Cui, Y., Zhang, M., Zeng, F., Jin, H., Xu, Q., & Huang, Y. (2016). Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Applied Materials & Interfaces, 8(47), 32159–32169.
- Cuomo, J., Appendino, G., Dern, A. S., Schneider, E., McKinnon, T. P., Brown, M. J., … Dixon, B. M. (2011). Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. Journal of Natural Products, 74(4), 664–669.
- da Silva, A. C., de Freitas Santos, P. D., do Prado Silva, J. T., Leimann, F. V., Bracht, L., & Gonçalves, O. H. (2018). Impact of curcumin nanoformulation on its antimicrobial activity. Trends in Food Science & Technology, 72, 74–82.
- Dang, L. H., Nguyen, T. H., Tran, H. L. B., Doan, V. N., & Tran, N. Q. (2018). Injectable nanocurcumin-formulated chitosan-g-pluronic hydrogel exhibiting a great potential for burn treatment. Journal of Healthcare Engineering, 2018, 14. https://doi.org/10.1155/2018/5754890.
- Date, A. A., Joshi, M. D., & Patravale, V. B. (2007). Parasitic diseases: Liposomes and polymeric nanoparticles versus lipid nanoparticles. Advanced Drug Delivery Reviews, 59(6), 505–521.
- Davis, B. M., Pahlitzsch, M., Guo, L., Balendra, S., Shah, P., Ravindran, N., … Hamze, H. (2018). Topical curcumin nanocarriers are neuroprotective in eye disease. Scientific Reports, 8(1), 1–13.
- de Carvalho, F. B., de Gomes, M. G., Savall, A. S. P., Fidelis, E. M., Pinton, S., Ribeiro, A. C. F., … Haas, S. E. (2021). Evaluation of curcumin-loaded polymeric nanocapsules with different coatings in chick embryo model: Influence on angiogenesis, teratogenesis and oxidative stress. Pharmacological Reports, 73, 563–573.
- Del Prado-Audelo, M., Magaña, J., Mejía-Contreras, B., Borbolla-Jiménez, F., Giraldo-Gomez, D., Piña-Barba, M., … Leyva-Gómez, G. (2019). In vitro cell uptake evaluation of curcumin-loaded PCL/F68 nanoparticles for potential application in neuronal diseases. Journal of Drug Delivery Science and Technology, 52, 905–914.
- Delavarian, Z., Pakfetrat, A., Ghazi, A., Jaafari, M. R., Homaei Shandiz, F., Dalirsani, Z., … Rahimi, H. R. (2019). Oral administration of nanomicelle curcumin in the prevention of radiotherapy-induced mucositis in head and neck cancers. Special Care in Dentistry, 39(2), 166–172.
- Derjaguin, B., & Landau, L. (1993). Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Progress in Surface Science, 43(1–4), 30–59.
- Dhavamani, S., & Lokesh, B. (2019). Co-delivery of curcumin and fish oil in phospholipid nanoemulsions attenuates motor impairments and neuro-inflammation in MPTP induced Parkinson's disease rat model. The FASEB Journal, 33(S1), lb59-lb59.
10.1096/fasebj.2019.33.1_supplement.lb59 Google Scholar
- Dhivya, R., Ranjani, J., Bowen, P. K., Rajendhran, J., Mayandi, J., & Annaraj, J. (2017). Biocompatible curcumin loaded PMMA-PEG/ZnO nanocomposite induce apoptosis and cytotoxicity in human gastric cancer cells. Materials Science and Engineering: C, 80, 59–68.
- Dhivya, R., Ranjani, J., Rajendhran, J., Mayandi, J., & Annaraj, J. (2018). Enhancing the anti-gastric cancer activity of curcumin with biocompatible and pH sensitive PMMA-AA/ZnO nanoparticles. Materials Science and Engineering: C, 82, 182–189.
- Dhule, S. S., Penfornis, P., Frazier, T., Walker, R., Feldman, J., Tan, G., … Pochampally, R. (2012). Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomedicine: Nanotechnology, Biology and Medicine, 8(4), 440–451.
- Di Martino, R. M. C., Luppi, B., Bisi, A., Gobbi, S., Rampa, A., Abruzzo, A., & Belluti, F. (2017). Recent progress on curcumin-based therapeutics: A patent review (2012-2016). Part I: Curcumin. Expert Opinion on Therapeutic Patents, 27(5), 579–590.
- Di Meo, F., Filosa, S., Madonna, M., Giello, G., Di Pardo, A., Maglione, V., … Crispi, S. (2019). Curcumin C3 complex®/Bioperine® has antineoplastic activity in mesothelioma: An in vitro and in vivo analysis. Journal of Experimental & Clinical Cancer Research, 38(1), 1–11.
- Dilnessa, T., & Zeleke, H. (2017). Cell culture, cytopathic effect and immunofluorescence diagnosis of viral infection. Journal of Microbiology and Modern Techniques, 2, 102–110.
- Djalali, M., Abdolahi, M., Hosseini, R., Miraghajani, M., Mohammadi, H., & Djalali, M. (2020). The effects of nano-curcumin supplementation on Th1/Th17 balance in migraine patients: A randomized controlled clinical trial. Complementary Therapies in Clinical Practice, 41, 101256.
- Djalali, M., Djalali, M., Abdolahi, M., Mohammadi, H., Heidari, H., Hosseini, S., & Sadeghizadeh, M. (2020). The effect of Nano-Curcumin supplementation on Pentraxin 3 gene expression and serum level in migraine patients. Reports of Biochemistry & Molecular Biology, 9(1), 1–7.
- Djiokeng Paka, G., Doggui, S., Zaghmi, A., Safar, R., Dao, L., Reisch, A., … Ramassamy, C. (2016). Neuronal uptake and neuroprotective properties of curcumin-loaded nanoparticles on SK-N-SH cell line: Role of poly (lactide-co-glycolide) polymeric matrix composition. Molecular Pharmaceutics, 13(2), 391–403.
- Dolatabadi, S., Karimi, M., Nasirizadeh, S., Hatamipour, M., Golmohammadzadeh, S., & Jaafari, M. R. (2021). Preparation, characterization and in vivo pharmacokinetic evaluation of curcuminoids-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). Journal of Drug Delivery Science and Technology, 62, 102352.
- Dolati, S., Aghebati-Maleki, L., Ahmadi, M., Marofi, F., Babaloo, Z., Ayramloo, H., … Younesi, V. (2018). Nanocurcumin restores aberrant miRNA expression profile in multiple sclerosis, randomized, double-blind, placebo-controlled trial. Journal of Cellular Physiology, 233(7), 5222–5230.
- Dolati, S., Ahmadi, M., Aghebti-Maleki, L., Nikmaram, A., Marofi, F., Rikhtegar, R., … Yousefi, M. (2018). Nanocurcumin is a potential novel therapy for multiple sclerosis by influencing inflammatory mediators. Pharmacological Reports, 70(6), 1158–1167.
- Dolati, S., Ahmadi, M., Rikhtegar, R., Babaloo, Z., Ayromlou, H., Aghebati-Maleki, L., … Yousefi, M. (2018). Changes in Th17 cells function after nanocurcumin use to treat multiple sclerosis. International Immunopharmacology, 61, 74–81.
- Dolati, S., Babaloo, Z., Ayromlou, H., Ahmadi, M., Rikhtegar, R., Rostamzadeh, D., … Younesi, V. (2019). Nanocurcumin improves regulatory T-cell frequency and function in patients with multiple sclerosis. Journal of Neuroimmunology, 327, 15–21.
- Dong, J., Tao, L., Abourehab, M. A., & Hussain, Z. (2018). Design and development of novel hyaluronate-modified nanoparticles for combo-delivery of curcumin and alendronate: Fabrication, characterization, and cellular and molecular evidences of enhanced bone regeneration. International Journal of Biological Macromolecules, 116, 1268–1281.
- dos Santos, R. B., Nakama, K. A., Pacheco, C. O., de Gomes, M. G., de Souza, J. F., de Souza Pinto, A. C., … Fajardo, A. R. (2020). Curcumin-loaded nanocapsules: Influence of surface characteristics on technological parameters and potential antimalarial activity. Materials Science and Engineering: C, 118, 111356.
- Doyle, K. P., Simon, R. P., & Stenzel-Poore, M. P. (2008). Mechanisms of ischemic brain damage. Neuropharmacology, 55(3), 310–318.
- Draganski, A., Tar, M. T., Villegas, G., Friedman, J. M., & Davies, K. P. (2018). Topically applied curcumin-loaded nanoparticles treat erectile dysfunction in a rat model of type-2 diabetes. The Journal of Sexual Medicine, 15(5), 645–653.
- Edvinsson, L., Villalón, C. M., & MaassenVanDenBrink, A. (2012). Basic mechanisms of migraine and its acute treatment. Pharmacology & Therapeutics, 136(3), 319–333.
- Eftekhari, A., Alipour, M., Chodari, L., Maleki Dizaj, S., Ardalan, M. R., Samiei, M., … Khalilov, R. (2021). A comprehensive review of detection methods for SARS-CoV-2. Microorganisms, 9(2), 232.
- El-Halim, S. M. A., Mamdouh, M. A., El-Haddad, A. E., & Soliman, S. M. (2020). Fabrication of anti-HSV-1 Curcumin stabilized nanostructured Proniosomal gel: Molecular docking studies on thymidine kinase proteins. Scientia Pharmaceutica, 88(1), 9.
- El-Shafey, A. A., Hegab, M. H., Seliem, M. M., Barakat, A. M., Mostafa, N. E., Abdel-Maksoud, H. A., & Abdelhameed, R. M. (2020). Curcumin@ metal organic frameworks nano-composite for treatment of chronic toxoplasmosis. Journal of Materials Science: Materials in Medicine, 31(11), 1–13.
- Ensign, L., Cone, R., & Hanes, J. (2017). Nanoparticle formulations with enhanced mucosal penetration. Google Patents.
- Fahimirad, S., Abtahi, H., Satei, P., Ghaznavi-Rad, E., Moslehi, M., & Ganji, A. (2021). Wound healing performance of PCL/chitosan based electrospun nanofiber electrosprayed with curcumin loaded chitosan nanoparticles. Carbohydrate Polymers, 259, 117640.
- Fan, S., Zheng, Y., Liu, X., Fang, W., Chen, X., Liao, W., … Ma, Q. (2018). Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer's disease. Drug Delivery, 25(1), 1091–1102.
- Fan, Z., Li, J., Liu, J., Jiao, H., & Liu, B. (2018). Anti-inflammation and joint lubrication dual effects of a novel hyaluronic acid/curcumin nanomicelle improve the efficacy of rheumatoid arthritis therapy. ACS Applied Materials & Interfaces, 10(28), 23595–23604.
- Farjadian, F., Ghasemi, A., Gohari, O., Roointan, A., Karimi, M., & Hamblin, M. R. (2019). Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities. Nanomedicine, 14(1), 93–126.
- Fornaguera, C., & García-Celma, M. J. (2017). Personalized nanomedicine: A revolution at the nanoscale. Journal of Personalized Medicine, 7(4), 12.
- Ganesan, P., Kim, B., Ramalingam, P., Karthivashan, G., Revuri, V., Park, S., … Choi, D.-K. (2019). Antineuroinflammatory activities and neurotoxicological assessment of curcumin loaded solid lipid nanoparticles on LPS-stimulated BV-2 microglia cell models. Molecules, 24(6), 1170.
- Ganguly, R., Kumar, S., Kunwar, A., Nath, S., Sarma, H., Tripathi, A., … Melo, J. (2020). Structural and therapeutic properties of curcumin solubilized pluronic F127 micellar solutions and hydrogels. Journal of Molecular Liquids, 314, 113591.
- Ganguly, R., Kunwar, A., Dutta, B., Kumar, S., Barick, K., Ballal, A., … Hassan, P. (2017). Heat-induced solubilization of curcumin in kinetically stable pluronic P123 micelles and vesicles: An exploit of slow dynamics of the micellar restructuring processes in the aqueous pluronic system. Colloids and Surfaces B: Biointerfaces, 152, 176–182.
- Gao, C., Wang, Y., Sun, J., Han, Y., Gong, W., Li, Y., … Li, Z. (2020). Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer's disease mice. Acta Biomaterialia, 108, 285–299.
- Gao, Q., Wang, Z., Liu, Z., Li, X., Zhang, Y., Zhang, Z., & Cen, S. (2014). A cell-based high-throughput approach to identify inhibitors of influenza a virus. Acta Pharmaceutica Sinica B, 4(4), 301–306.
- Gaware, S. A., Rokade, K. A., & Kale, S. (2019). Silica-chitosan nanocomposite mediated pH-sensitive drug delivery. Journal of Drug Delivery Science and Technology, 49, 345–351.
- Gawde, K. A., Sau, S., Tatiparti, K., Kashaw, S. K., Mehrmohammadi, M., Azmi, A. S., & Iyer, A. K. (2018). Paclitaxel and di-fluorinated curcumin loaded in albumin nanoparticles for targeted synergistic combination therapy of ovarian and cervical cancers. Colloids and Surfaces B: Biointerfaces, 167, 8–19.
- Gelderblom, H. R. (1996). Structure and classification of viruses Medical Microbiology ( 4th ed.). Galveston: University of Texas Medical Branch.
- Geng, Y., Dalhaimer, P., Cai, S., Tsai, R., Tewari, M., Minko, T., & Discher, D. E. (2007). Shape effects of filaments versus spherical particles in flow and drug delivery. Nature Nanotechnology, 2(4), 249–255.
- Gera, M., Sharma, N., Ghosh, M., Huynh, D. L., Lee, S. J., Min, T., … Jeong, D. K. (2017). Nanoformulations of curcumin: An emerging paradigm for improved remedial application. Oncotarget, 8(39), 66680–66698.
- Ghaee, A., Bagheri-Khoulenjani, S., Afshar, H. A., & Bogheiri, H. (2019). Biomimetic nanocomposite scaffolds based on surface modified PCL-nanofibers containing curcumin embedded in chitosan/gelatin for skin regeneration. Composites Part B: Engineering, 177, 107339.
- Ghaffari, S., Alihosseini, F., Sorkhabadi, S. M. R., Bidgoli, S. A., Mousavi, S. E., Haghighat, S., … Kianvash, N. (2018). Nanotechnology in wound healing; semisolid dosage forms containing curcumin-ampicillin solid lipid nanoparticles, in-vitro, ex-vivo and in-vivo characteristics. Advanced Pharmaceutical Bulletin, 8(3), 395–400.
- Ghosh, A., Banerjee, T., Bhandary, S., & Surolia, A. (2014). Formulation of nanotized curcumin and demonstration of its antimalarial efficacy. International Journal of Nanomedicine, 9, 5373.
- Giacomeli, R., Izoton, J. C., Dos Santos, R. B., Boeira, S. P., Jesse, C. R., & Haas, S. E. (2019). Neuroprotective effects of curcumin lipid-core nanocapsules in a model Alzheimer's disease induced by β-amyloid 1-42 peptide in aged female mice. Brain Research, 1721, 146325.
- Gil, A. (2002). Polyunsaturated fatty acids and inflammatory diseases. Biomedicine & Pharmacotherapy, 56(8), 388–396.
- Gómez-Estaca, J., Balaguer, M., López-Carballo, G., Gavara, R., & Hernández-Muñoz, P. (2017). Improving antioxidant and antimicrobial properties of curcumin by means of encapsulation in gelatin through electrohydrodynamic atomization. Food Hydrocolloids, 70, 313–320.
- Gompelman, M., van Asten, S. A., & Peters, E. J. (2016). Update on the role of infection and biofilms in wound healing: Pathophysiology and treatment. Plastic and Reconstructive Surgery, 138(3S), 61S–70S.
- Gopal, J., Muthu, M., & Chun, S.-C. (2016). Water soluble nanocurcumin extracted from turmeric challenging the microflora from human oral cavity. Food Chemistry, 211, 903–909.
- Gopi, S., Jacob, J., Varma, K., Jude, S., Amalraj, A., Arundhathy, C., … Kunnumakkara, A. B. (2017). Comparative oral absorption of curcumin in a natural turmeric matrix with two other curcumin formulations: An open-label parallel-arm study. Phytotherapy Research, 31(12), 1883–1891.
- Gopinath, D., Ahmed, M. R., Gomathi, K., Chitra, K., Sehgal, P., & Jayakumar, R. (2004). Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials, 25(10), 1911–1917.
- Gorji, A., Straub, H., & Speckmann, E.-J. (2005). Epilepsy surgery: Perioperative investigations of intractable epilepsy. Anatomy and Embryology, 210(5–6), 525–537.
- Gota, V. S., Maru, G. B., Soni, T. G., Gandhi, T. R., Kochar, N., & Agarwal, M. G. (2010). Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers. Journal of Agricultural and Food Chemistry, 58(4), 2095–2099.
- Gratton, S. E., Ropp, P. A., Pohlhaus, P. D., Luft, J. C., Madden, V. J., Napier, M. E., & DeSimone, J. M. (2008). The effect of particle design on cellular internalization pathways. Proceedings of the National Academy of Sciences, 105(33), 11613–11618.
- Guo, R., Lan, Y., Xue, W., Cheng, B., Zhang, Y., Wang, C., & Ramakrishna, S. (2017). Collagen-cellulose nanocrystal scaffolds containing curcumin-loaded microspheres on infected full-thickness burns repair. Journal of Tissue Engineering and Regenerative Medicine, 11(12), 3544–3555.
- Gupta, T., Singh, J., Kaur, S., Sandhu, S., Singh, G., & Kaur, I. P. (2020). Enhancing bioavailability and stability of Curcumin using solid lipid nanoparticles (CLEN): A covenant for its effectiveness. Frontiers in Bioengineering and Biotechnology, 8, 879.
- Gutiérrez-Gutiérrez, F., Sánchez-Jiménez, C., Rangel-Castañeda, I. A., Carbajal-Arízaga, G. G., Macías-Lamas, A. M., Castillo-Romero, A., & Parra-Saavedra, K. J. (2020). Encapsulation of curcumin into layered double hydroxides improve their anticancer and antiparasitic activity. Journal of Pharmacy and Pharmacology, 72(7), 897–908.
- Hadjikhani, N., Albrecht, D. S., Mainero, C., Ichijo, E., Ward, N., Granziera, C., … Price, J. (2020). Extra-axial inflammatory signal in parameninges in migraine with visual aura. Annals of Neurology, 87(6), 939–949.
- Hajivalili, M., Pourgholi, F., Samadi Kafil, H., Jadidi-Niaragh, F., & Yousefi, M. (2016). Mesenchymal stem cells in the treatment of amyotrophic lateral sclerosis. Current Stem Cell Research & Therapy, 11(1), 41–50.
- Hamam, F., & Nasr, A. (2020). Curcumin-loaded mesoporous silica particles as wound-healing agent: An in vivo study. Saudi Journal of Medicine & Medical Sciences, 8(1), 17–24.
- Hashemian, M., Anissian, D., Ghasemi-Kasman, M., Akbari, A., Khalili-Fomeshi, M., Ghasemi, S., … Ebrahimpour, A. (2017). Curcumin-loaded chitosan-alginate-STPP nanoparticles ameliorate memory deficits and reduce glial activation in pentylenetetrazol-induced kindling model of epilepsy. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 79, 462–471.
- Hatamie, S., Nouri, M., Karandikar, S., Kulkarni, A., Dhole, S., Phase, D., & Kale, S. (2012). Complexes of cobalt nanoparticles and polyfunctional curcumin as antimicrobial agents. Materials Science and Engineering: C, 32(2), 92–97.
- He, X.-L., Yang, L., Wang, Z.-J., Huang, R.-Q., Zhu, R.-R., & Cheng, L.-M. (2021). Solid lipid nanoparticles loading with curcumin and dexanabinol to treat major depressive disorder. Neural Regeneration Research, 16(3), 537–542.
- He, X., Zhu, Y., Wang, M., Jing, G., Zhu, R., & Wang, S. (2016). Antidepressant effects of curcumin and HU-211 coencapsulated solid lipid nanoparticles against corticosterone-induced cellular and animal models of major depression. International Journal of Nanomedicine, 11, 4975–4990.
- Henchcliffe, C., & Beal, M. F. (2008). Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nature Clinical Practice Neurology, 4(11), 600–609.
- Hoda, M., Hemaiswarya, S., & Doble, M. (2019). Role of phenolic phytochemicals in diabetes management: Phenolic Phytochemicals and Diabetes. Singapore: Springer Nature Singapore Pte Ltd.
10.1007/978-981-13-8997-9 Google Scholar
- Howard, C. R., & Fletcher, N. F. (2012). Emerging virus diseases: Can we ever expect the unexpected? Emerging Microbes & Infections, 1(1), 1–9.
- Hua, S., De Matos, M. B., Metselaar, J. M., & Storm, G. (2018). Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Frontiers in Pharmacology, 9, 790.
- Huang, C.-C., Lin, C.-J., Chen, S.-Y., Chang, L., & Lin, H.-J. (2020). Curcumin carbon quantum dots and use thereof. Google Patents.
- Huang, R., Zhu, Y., Lin, L., Song, S., Cheng, L., & Zhu, R. (2020). Solid lipid nanoparticles enhanced the Neuroprotective role of Curcumin against epilepsy through activation of Bcl-2 family and P38 MAPK pathways. ACS Chemical Neuroscience, 11(13), 1985–1995.
- Huo, X., Zhang, Y., Jin, X., Li, Y., & Zhang, L. (2019). A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer's disease. Journal of Photochemistry and Photobiology B: Biology, 190, 98–102.
- Ibrahim, S., Tagami, T., Kishi, T., & Ozeki, T. (2018). Curcumin marinosomes as promising nano-drug delivery system for lung cancer. International Journal of Pharmaceutics, 540(1–2), 40–49.
- Imani, A., Maleki, N., Bohlouli, S., Kouhsoltani, M., Sharifi, S., & Maleki Dizaj, S. (2021). Molecular mechanisms of anticancer effect of rutin. Phytotherapy Research, 35(5), 2500–2513.
- Ipar, V. S., Dsouza, A., & Devarajan, P. V. (2019). Enhancing curcumin oral bioavailability through nanoformulations. European Journal of Drug Metabolism and Pharmacokinetics, 44(4), 459–480.
- Islam, S. U., Ahmed, M. B., Ul-Islam, M., Shehzad, A., & Lee, Y. S. (2019). Switching from conventional to Nano-natural phytochemicals to prevent and treat cancers: Special emphasis on resveratrol. Current Pharmaceutical Design, 25(34), 3620–3632.
- Izzo, A. A., Hoon-Kim, S., Radhakrishnan, R., & Williamson, E. M. (2016). A critical approach to evaluating clinical efficacy, adverse events and drug interactions of herbal remedies. Phytotherapy Research, 30(5), 691–700.
- Izzo, A. A., Teixeira, M., Alexander, S. P., Cirino, G., Docherty, J. R., George, C. H., … Panattieri, R. A. (2020). A practical guide for transparent reporting of research on natural products in the British Journal of Pharmacology: Reproducibility of natural product research. British Journal of Pharmacology, 177, 2169–2178.
- Jäger, R., Lowery, R. P., Calvanese, A. V., Joy, J. M., Purpura, M., & Wilson, J. M. (2014). Comparative absorption of curcumin formulations. Nutrition Journal, 13(1), 1–8.
- Jain, A., Doppalapudi, S., Domb, A. J., & Khan, W. (2016). Tacrolimus and curcumin co-loaded liposphere gel: Synergistic combination towards management of psoriasis. Journal of Controlled Release, 243, 132–145.
- Javadi, M., Khadem Haghighian, H., Goodarzy, S., Abbasi, M., & Nassiri-Asl, M. (2019). Effect of curcumin nanomicelle on the clinical symptoms of patients with rheumatoid arthritis: A randomized, double-blind, controlled trial. International Journal of Rheumatic Diseases, 22(10), 1857–1862.
- Jelcic, I., Al Nimer, F., Wang, J., Lentsch, V., Planas, R., Jelcic, I., … Frauenknecht, K. (2018). Memory B cells activate brain-homing, autoreactive CD4+ T cells in multiple sclerosis. Cell, 175(1), 85–100.e123.
- Jermy, B. R., & Ravinayagam, V. (2020). Curcumin-based magnetic nanostructured system for dual response of imaging and therapeutics. Google Patents.
- Jia, T., Rao, J., Zou, L., Zhao, S., Yi, Z., Wu, B., … Zhang, C. (2018). Nanoparticle-encapsulated curcumin inhibits diabetic neuropathic pain involving the P2Y12 receptor in the dorsal root ganglia. Frontiers in Neuroscience, 11, 755.
- Jiang, T., Liao, W., & Charcosset, C. (2020). Recent advances in encapsulation of curcumin in nanoemulsions: A review of encapsulation technologies, bioaccessibility and applications. Food Research International, 132, 109035.
- Jose, A., Labala, S., Ninave, K. M., Gade, S. K., & Venuganti, V. V. K. (2018). Effective skin cancer treatment by topical co-delivery of curcumin and STAT3 siRNA using cationic liposomes. AAPS PharmSciTech, 19(1), 166–175.
- Jose, A., Labala, S., & Venuganti, V. V. K. (2017). Co-delivery of curcumin and STAT3 siRNA using deformable cationic liposomes to treat skin cancer. Journal of Drug Targeting, 25(4), 330–341.
- Jourghanian, P., Ghaffari, S., Ardjmand, M., Haghighat, S., & Mohammadnejad, M. (2016). Sustained release curcumin loaded solid lipid nanoparticles. Advanced Pharmaceutical Bulletin, 6(1), 17–21.
- Kakkar, V., Muppu, S. K., Chopra, K., & Kaur, I. P. (2013). Curcumin loaded solid lipid nanoparticles: An efficient formulation approach for cerebral ischemic reperfusion injury in rats. European Journal of Pharmaceutics and Biopharmaceutics, 85(3), 339–345.
- Kalirajan, C., & Palanisamy, T. (2019). A ZnO–curcumin nanocomposite embedded hybrid collagen scaffold for effective scarless skin regeneration in acute burn injury. Journal of Materials Chemistry B, 7(38), 5873–5886.
- Kamar, S. S., Abdel-Kader, D. H., & Rashed, L. A. (2019). Beneficial effect of Curcumin nanoparticles-hydrogel on excisional skin wound healing in type-I diabetic rat: Histological and immunohistochemical studies. Annals of Anatomy-Anatomischer Anzeiger, 222, 94–102.
- Kamel, N. A., Soliman, A. A., Rozik, N. N., & Abd-Elmessieh, S. L. (2018). Biophysical investigation of curcumin based nanocomposite for wound dressing application. Journal of Applied Pharmaceutical Science, 8(05), 35–44.
- Kanai, M., Imaizumi, A., Otsuka, Y., Sasaki, H., Hashiguchi, M., Tsujiko, K., … Chiba, T. (2012). Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemotherapy and Pharmacology, 69(1), 65–70.
- Kanai, M., Otsuka, Y., Otsuka, K., Sato, M., Nishimura, T., Mori, Y., … Matsumoto, S. (2013). A phase I study investigating the safety and pharmacokinetics of highly bioavailable curcumin (Theracurmin®) in cancer patients. Cancer Chemotherapy and Pharmacology, 71(6), 1521–1530.
- Kang, C., Jung, E., Hyeon, H., Seon, S., & Lee, D. (2020). Acid-activatable polymeric curcumin nanoparticles as therapeutic agents for osteoarthritis. Nanomedicine: Nanotechnology, Biology and Medicine, 23, 102104.
- Kang, J.-Y., Kim, H., Mun, D., Yun, N., & Joung, B. (2021). Co-delivery of curcumin and miRNA-144-3p using heart-targeted extracellular vesicles enhances the therapeutic efficacy for myocardial infarction. Journal of Controlled Release, 331, 62–73.
- Karavasili, C., Andreadis, D. A., Katsamenis, O. L., Panteris, E., Anastasiadou, P., Kakazanis, Z., … Vizirianakis, I. S. (2019). Synergistic antitumor potency of a self-assembling peptide hydrogel for the local co-delivery of doxorubicin and curcumin in the treatment of head and neck cancer. Molecular Pharmaceutics, 16(6), 2326–2341.
- Karimi, A., Mahmoodpoor, A., Kooshki, F., Niazkar, H. R., Shoorei, H., & Tarighat-Esfanjani, A. (2020). Effects of nanocurcumin on inflammatory factors and clinical outcomes in critically ill patients with sepsis: A pilot randomized clinical trial. European Journal of Integrative Medicine, 36, 101122.
- Karimi, M., Gheybi, F., Zamani, P., Mashreghi, M., Golmohammadzadeh, S., Darban, S. A., … Jaafari, M. R. (2020). Preparation and characterization of stable nanoliposomal formulations of Curcumin with high loading efficacy: In vitro and in vivo anti-tumor study. International Journal of Pharmaceutics, 580, 119211.
- Karthikeyan, A., Senthil, N., & Min, T. (2020). Nanocurcumin: A promising candidate for therapeutic applications. Frontiers in Pharmacology, 11, 437.
- Kashyap, D., Tuli, H. S., Yerer, M. B., Sharma, A., Sak, K., Srivastava, S., … Bishayee, A. (2019). Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Paper presented at the Seminars in cancer biology.
- Kaur, I. P., Kakkar, V., Deol, P. K., Yadav, M., Singh, M., & Sharma, I. (2014). Issues and concerns in nanotech product development and its commercialization. Journal of Controlled Release, 193, 51–62.
- Kaur, S., Modi, N. H., Panda, D., & Roy, N. (2010). Probing the binding site of curcumin in Escherichia coli and Bacillus subtilis FtsZ–a structural insight to unveil antibacterial activity of curcumin. European Journal of Medicinal Chemistry, 45(9), 4209–4214.
- Khadijeh, K. (2020). Preparation and characterization of solid lipid nanoparticles and nanostructured lipid carriers for transdermal delivery of kojic acid. Mazandaran University of Medical Sciences.
- Khadrawy, Y. A., Hosny, E. N., El-Gizawy, M. M., Sawie, H. G., & Ezz, H. S. A. (2021). The effect of Curcumin nanoparticles on Cisplatin-induced Cardiotoxicity in male Wistar albino rats. Cardiovascular Toxicology, 21(6), 433–443.
- Khatua, A., Prasad, A., Priyadarshini, E., Virmani, I., Ghosh, L., Paul, B., … Saravanan, M. (2020). CTAB-PLGA Curcumin nanoparticles: Preparation, biophysical characterization and their enhanced antifungal activity against Phytopathogenic fungus Pythium ultimum. ChemistrySelect, 5(34), 10574–10580.
- Kheiripour, N., Plarak, A., Heshmati, A., Asl, S. S., Mehri, F., Ebadollahi-Natanzi, A., … Hosseini, A. (2021). Evaluation of the hepatoprotective effects of curcumin and nanocurcumin against paraquat-induced liver injury in rats: Modulation of oxidative stress and Nrf2 pathway. Journal of Biochemical and Molecular Toxicology, 35, e22739.
- Khezri, K., Saeedi, M., & Dizaj, S. M. (2018). Application of nanoparticles in percutaneous delivery of active ingredients in cosmetic preparations. Biomedicine & Pharmacotherapy, 106, 1499–1505.
- Khezri, K., Saeedi, M., Morteza-Semnani, K., Akbari, J., & Hedayatizadeh-Omran, A. (2021). A promising and effective platform for delivering hydrophilic depigmenting agents in the treatment of cutaneous hyperpigmentation: Kojic acid nanostructured lipid carrier. Artificial Cells, Nanomedicine, and Biotechnology, 49(1), 38–47.
- Khezri, K., Saeedi, M., Morteza-Semnani, K., Akbari, J., & Rostamkalaei, S. S. (2020). An emerging technology in lipid research for targeting hydrophilic drugs to the skin in the treatment of hyperpigmentation disorders: Kojic acid-solid lipid nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 48(1), 841–853.
- Kianvash, N., Bahador, A., Pourhajibagher, M., Ghafari, H., Nikoui, V., Rezayat, S. M., … Partoazar, A. (2017). Evaluation of propylene glycol nanoliposomes containing curcumin on burn wound model in rat: Biocompatibility, wound healing, and anti-bacterial effects. Drug Delivery and Translational Research, 7(5), 654–663.
- Kim, D.-W., Choi, C.-H., Park, J. P., & Lee, S.-J. (2020). Nanospheres loaded with curcumin improve the bioactivity of umbilical cord BLOOD-mesenchymal stem cells via c-Src activation during the skin wound healing process. Cell, 9(6), 1467.
- Kimura, K., Hohjoh, H., Fukuoka, M., Sato, W., Oki, S., Tomi, C., … Yamamura, T. (2018). Circulating exosomes suppress the induction of regulatory T cells via let-7i in multiple sclerosis. Nature Communications, 9(1), 1–14.
- Kitture, R., Ghosh, S., More, P. A., Gaware, S., Datar, S., Chopade, B. A., & Kale, S. (2015). Curcumin-loaded, self-assembled aloevera template for superior antioxidant activity and trans-membrane drug release. Journal of Nanoscience and Nanotechnology, 15(6), 4039–4045.
- Klickovic, U., Doberer, D., Gouya, G., Aschauer, S., Weisshaar, S., Storka, A., … Wolzt, M. (2014). Human pharmacokinetics of high dose oral curcumin and its effect on heme oxygenase-1 expression in healthy male subjects. BioMed Research International, 2014, 458592.
- Koehler, J., Brandl, F. P., & Goepferich, A. M. (2018). Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. European Polymer Journal, 100, 1–11.
- Kole, S., Gotmare, V., & Athawale, R. (2019). Novel approach for development of eco-friendly antimicrobial textile material for health care application. The Journal of the Textile Institute, 110(2), 254–266.
- Kovacs, G. G. (2014). Current concepts of neurodegenerative diseases. European Medical Journal Neurology, 1, 78–86.
- Kovacs, G. G. (2016). Molecular pathological classification of neurodegenerative diseases: Turning towards precision medicine. International Journal of Molecular Sciences, 17(2), 189.
- Kovacs, G. G. (2018). Concepts and classification of neurodegenerative diseases. In Handbook of clinical neurology (Vol. 145, pp. 301–307). Amsterdam, Netherlands: Elsevier.
- Krausz, A. E., Adler, B. L., Cabral, V., Navati, M., Doerner, J., Charafeddine, R. A., … Clendaniel, A. (2015). Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine: Nanotechnology, Biology and Medicine, 11(1), 195–206.
- Krishnakumar, I., Ravi, A., Kumar, D., Kuttan, R., & Maliakel, B. (2012). An enhanced bioavailable formulation of curcumin using fenugreek-derived soluble dietary fibre. Journal of Functional Foods, 4(1), 348–357.
- Krishnan, L. K., & Pillai, L. S. (2018). Fibrin wafer/disc as a biological carrier for sustained delivery of curcumin. Google Patents.
- Kumar, A., Mohapatra, S. S., & Cameron, D. F. (2015). Nanoparticle targeted drug delivery to the lungs using extra-testicular sertoli cells. Google Patents.
- Kumar, A., Sirohi, V. K., Anum, F., Singh, P. K., Gupta, K., Gupta, D., … Chourasia, M. K. (2017). Enhanced apoptosis, survivin down-regulation and assisted immunochemotherapy by curcumin loaded amphiphilic mixed micelles for subjugating endometrial cancer. Nanomedicine: Nanotechnology, Biology and Medicine, 13(6), 1953–1963.
- Kumar, D., Jacob, D., Subash, P., Maliakkal, A., Johannah, N., Kuttan, R., … Krishnakumar, I. (2016). Enhanced bioavailability and relative distribution of free (unconjugated) curcuminoids following the oral administration of a food-grade formulation with fenugreek dietary fibre: A randomised double-blind crossover study. Journal of Functional Foods, 22, 578–587.
- Kundu, P., Das, M., Tripathy, K., & Sahoo, S. K. (2016). Delivery of dual drug loaded lipid based nanoparticles across the blood–brain barrier impart enhanced neuroprotection in a rotenone induced mouse model of Parkinson's disease. ACS Chemical Neuroscience, 7(12), 1658–1670.
- Kuo, Y.-C., Wang, L.-J., & Rajesh, R. (2019). Targeting human brain cancer stem cells by curcumin-loaded nanoparticles grafted with anti-aldehyde dehydrogenase and sialic acid: Colocalization of ALDH and CD44. Materials Science and Engineering: C, 102, 362–372.
- Kurzrock, R., Li, L., Mehta, K., & Aggarwal, B. B. (2019). Liposomal Curcumin for treatment of Cancer. Google Patents.
- Lai, K.-C., Chueh, F.-S., Hsiao, Y.-T., Cheng, Z.-Y., Lien, J.-C., Liu, K.-C., … Chung, J.-G. (2019). Gefitinib and curcumin-loaded nanoparticles enhance cell apoptosis in human oral cancer SAS cells in vitro and inhibit SAS cell xenografted tumor in vivo. Toxicology and Applied Pharmacology, 382, 114734.
- Lazar, A. N., Mourtas, S., Youssef, I., Parizot, C., Dauphin, A., Delatour, B., … Duyckaerts, C. (2013). Curcumin-conjugated nanoliposomes with high affinity for Aβ deposits: Possible applications to Alzheimer disease. Nanomedicine: Nanotechnology, Biology and Medicine, 9(5), 712–721.
- Lee, H.-J., Jeong, M., Na, Y.-G., Kim, S.-J., Lee, H.-K., & Cho, C.-W. (2020). An EGF-and Curcumin-co-encapsulated nanostructured lipid carrier accelerates chronic-wound healing in diabetic rats. Molecules, 25(20), 4610.
- Lee, W.-H., Loo, C.-Y., Young, P. M., Traini, D., Mason, R. S., & Rohanizadeh, R. (2014). Recent advances in curcumin nanoformulation for cancer therapy. Expert Opinion on Drug Delivery, 11(8), 1183–1201.
- Leuci, R., Brunetti, L., Poliseno, V., Laghezza, A., Loiodice, F., Tortorella, P., & Piemontese, L. (2021). Natural compounds for the prevention and treatment of cardiovascular and neurodegenerative diseases. Food, 10(1), 29.
- Li, C., & Schluesener, H. (2017). Health-promoting effects of the citrus flavanone hesperidin. Critical Reviews in Food Science and Nutrition, 57(3), 613–631.
- Li, D., Nie, W., Chen, L., Miao, Y., Zhang, X., Chen, F., … He, C. (2017). Fabrication of curcumin-loaded mesoporous silica incorporated polyvinyl pyrrolidone nanofibers for rapid hemostasis and antibacterial treatment. RSC Advances, 7(13), 7973–7982.
- Li, H., Yan, L., Tang, E. K., Zhang, Z., Chen, W., Liu, G., & Mo, J. (2019). Synthesis of TPGS/curcumin nanoparticles by thin-film hydration and evaluation of their anti-colon cancer efficacy in vitro and in vivo. Frontiers in Pharmacology, 10, 769.
- Li, Y., Zhang, Q., Qi, D., Zhang, L., Yi, L., Li, Q., & Zhang, Z. (2016). Valproate ameliorates nitroglycerin-induced migraine in trigeminal nucleus caudalis in rats through inhibition of NF-кB. The Journal of Headache and Pain, 17(1), 49.
- Li, Z., Shi, M., Li, N., & Xu, R. (2020). Application of functional biocompatible Nanomaterials to improve Curcumin bioavailability. Frontiers in Chemistry, 8, 929.
- Liang, J., Dong, X., Yang, A., Zhu, D., Kong, D., & Lv, F. (2019). A dual fluorescent reverse targeting drug delivery system based on curcumin-loaded ovalbumin nanoparticles for allergy treatment. Nanomedicine: Nanotechnology, Biology and Medicine, 16, 56–68.
- Lin, C. J., Chang, L., Chu, H. W., Lin, H. J., Chang, P. C., Wang, R. Y., … Huang, C. C. (2019). High amplification of the antiviral activity of curcumin through transformation into carbon quantum dots. Small, 15(41), 1902641.
- Liu, C., Yu, F., Niu, X., Wang, X., Li, G., & Li, X. (2020). Co-loading of Levodopa and curcumin using brain-targeted protocells as a drug delivery system for improving the efficacy of Parkinson's disease.
- Liu, J., Chen, Z., Wang, J., Li, R., Li, T., Chang, M., … Wang, Y. (2018). Encapsulation of curcumin nanoparticles with MMP9-responsive and thermos-sensitive hydrogel improves diabetic wound healing. ACS Applied Materials & Interfaces, 10(19), 16315–16326.
- Liu, X.-F., Hao, J.-L., Xie, T., Mukhtar, N. J., Zhang, W., Malik, T. H., … Zhou, D.-D. (2017). Curcumin, a potential therapeutic candidate for anterior segment eye diseases: A review. Frontiers in Pharmacology, 8, 66.
- Lo, T.-H., Wu, Z.-Y., Chen, S.-Y., Meng, F.-Y., Chou, P.-T., Wang, C.-M., & Lin, H.-M. (2021). Curcumin-loaded mesoporous silica nanoparticles with dual-imaging and temperature control inhibits the infection of Zika virus. Microporous and Mesoporous Materials, 314, 110886.
- Loo, C.-Y., Rohanizadeh, R., Young, P. M., Traini, D., Cavaliere, R., Whitchurch, C. B., & Lee, W.-H. (2016). Combination of silver nanoparticles and curcumin nanoparticles for enhanced anti-biofilm activities. Journal of Agricultural and Food Chemistry, 64(12), 2513–2522.
- Lopresti, A. L., Smith, S. J., Rea, A., & Michel, S. (2021). Efficacy of a curcumin extract (Curcugen™) on gastrointestinal symptoms and intestinal microbiota in adults with self-reported digestive complaints: A randomised, double-blind, placebo-controlled study. BMC Complementary Medicine and Therapies, 21(1), 1–17.
- Lou, J., Hu, W., Tian, R., Zhang, H., Jia, Y., Zhang, J., & Zhang, L. (2014). Optimization and evaluation of a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles. International Journal of Nanomedicine, 9, 2517.
- Loutfy, S. A., Elberry, M. H., Farroh, K. Y., Mohamed, H. T., Mohamed, A. A., Mohamed, E. B., … Mousa, S. A. (2020). Antiviral activity of chitosan nanoparticles encapsulating Curcumin against hepatitis C virus genotype 4a in human Hepatoma cell lines. International Journal of Nanomedicine, 15, 2699–2715.
- Lu, L., Qi, S., Chen, Y., Luo, H., Huang, S., Yu, X., … Zhang, Z. (2020). Targeted immunomodulation of inflammatory monocytes across the blood-brain barrier by curcumin-loaded nanoparticles delays the progression of experimental autoimmune encephalomyelitis. Biomaterials, 245, 119987.
- Yallapu, M. M., Jaggi, M., & Chauhan, S. C. (2013). Curcumin nanomedicine: A road to cancer therapeutics. Current Pharmaceutical Design, 19(11), 1994–2010.
- Ma, Z., Wang, N., He, H., & Tang, X. (2019). Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. Journal of Controlled Release, 316, 359–380.
- Madan, S., Nehate, C., Barman, T. K., Rathore, A. S., & Koul, V. (2019). Design, preparation, and evaluation of liposomal gel formulations for treatment of acne: In vitro and in vivo studies. Drug Development and Industrial Pharmacy, 45(3), 395–404.
- Maddahi, A. (2012). MAPK and pro-inflammatory mediators in the walls of brain blood vessels following cerebral ischemia. Lund, Sweden: Lund University.
- Madhavi, D., & Kagan, D. (2014). Bioavailability of a sustained release formulation of curcumin. Integrative Medicine: A Clinician's Journal, 13(3), 24.
- Maghbooli, M., Safarnejad, B., Mostafavi, H., Mazloomzadeh, S., & Ghoreishi, A. (2019). Effect of Nanomicelle Curcumin on quality of life and sleep in patients with Parkinson's disease: A double-blind, randomized, and placebo-controlled trial. International Clinical Neuroscience Journal, 6(4), 140–145.
10.15171/icnj.2019.26 Google Scholar
- Maheshwari, M. (2010). Comparative bioavailability of curcumin, turmeric and Biocurcumax™ in traditional vehicles using non-everted rat intestinal sac model. Journal of Functional Foods, 2(1), 60–65.
- Maiti, P., Paladugu, L., & Dunbar, G. L. (2018). Solid lipid curcumin particles provide greater anti-amyloid, anti-inflammatory and neuroprotective effects than curcumin in the 5xFAD mouse model of Alzheimer's disease. BMC Neuroscience, 19(1), 1–18.
- Malathi, S., Pavithra, P., Sridevi, S., & Verma, R. S. (2020). Fabrication of nanopatterned PLGA films of curcumin and TPGS for skin cancer. International Journal of Pharmaceutics, 578, 119100.
- Manca, M. L., Castangia, I., Zaru, M., Nácher, A., Valenti, D., Fernàndez-Busquets, X., … Manconi, M. (2015). Development of curcumin loaded sodium hyaluronate immobilized vesicles (hyalurosomes) and their potential on skin inflammation and wound restoring. Biomaterials, 71, 100–109.
- Mansoor, S. R., Hashemian, M., Khalili-Fomeshi, M., Ashrafpour, M., Moghadamnia, A. A., & Ghasemi-Kasman, M. (2018). Upregulation of klotho and erythropoietin contributes to the neuroprotection induced by curcumin-loaded nanoparticles in experimental model of chronic epilepsy. Brain Research Bulletin, 142, 281–288.
- Mao, K.-L., Fan, Z.-L., Yuan, J.-D., Chen, P.-P., Yang, J.-J., Xu, J., … Shen, B.-X. (2017). Skin-penetrating polymeric nanoparticles incorporated in silk fibroin hydrogel for topical delivery of curcumin to improve its therapeutic effect on psoriasis mouse model. Colloids and Surfaces B: Biointerfaces, 160, 704–714.
- Mardani, R., Hamblin, M. R., Taghizadeh, M., Banafshe, H. R., Nejati, M., Mokhtari, M., … Jaafari, M. R. (2020). Nanomicellar-curcumin exerts its therapeutic effects via affecting angiogenesis, apoptosis, and T cells in a mouse model of melanoma lung metastasis. Pathology-Research and Practice, 216(9), 153082.
- Marković, Z. M., Kepić, D. P., Matijašević, D., Pavlović, V. B., Jovanović, S. P., Stanković, N., … Bajuk-Bogdanović, D. V. (2017). Ambient light induced antibacterial action of curcumin/graphene nanomesh hybrids. RSC Advances, 7(57), 36081–36092.
- Marques, M., Cordeiro, M., Marinho, M., Vian, C., Vaz, G., Alves, B., … Horn, A. (2020). Curcumin-loaded nanoemulsion improves haemorrhagic stroke recovery in wistar rats. Brain Research, 1746, 147007.
- Mathew, A., Fukuda, T., Nagaoka, Y., Hasumura, T., Morimoto, H., Yoshida, Y., … Kumar, D. S. (2012). Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer's disease. PLoS One, 7(3), e32616.
- Mathew, D., & Hsu, W.-L. (2018). Antiviral potential of curcumin. Journal of Functional Foods, 40, 692–699.
- Mellitus, D. (2005). Diagnosis and classification of diabetes mellitus. Diabetes Care, 28(S37), S5–S10.
- Memvanga, P. B., Coco, R., & Préat, V. (2013). An oral malaria therapy: Curcumin-loaded lipid-based drug delivery systems combined with β-arteether. Journal of Controlled Release, 172(3), 904–913.
- Meng, F., Asghar, S., Gao, S., Su, Z., Song, J., Huo, M., … Xiao, Y. (2015). A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer's disease. Colloids and Surfaces B: Biointerfaces, 134, 88–97.
- Meng, N., Gong, Y., Zhang, J., Mu, X., Song, Z., Feng, R., & Zhang, H. (2019). A novel curcumin-loaded nanoparticle restricts atherosclerosis development and promotes plaques stability in apolipoprotein E deficient mice. Journal of Biomaterials Applications, 33(7), 946–954.
- Mirzahosseinipour, M., Khorsandi, K., Hosseinzadeh, R., Ghazaeian, M., & Shahidi, F. K. (2020). Antimicrobial photodynamic and wound healing activity of curcumin encapsulated in silica nanoparticles. Photodiagnosis and Photodynamic Therapy, 29, 101639.
- Mishra, S., & Palanivelu, K. (2008). The effect of curcumin (turmeric) on Alzheimer's disease: An overview. Annals of Indian Academy of Neurology, 11(1), 13–19.
- Mithu, V. S., Sarkar, B., Bhowmik, D., Das, A. K., Chandrakesan, M., Maiti, S., & Madhu, P. K. (2014). Curcumin alters the salt bridge-containing turn region in amyloid β (1–42) aggregates. Journal of Biological Chemistry, 289(16), 11122–11131.
- Mohammed, H. S., Hosny, E. N., Khadrawy, Y. A., Magdy, M., Attia, Y. S., Sayed, O. A., & AbdElaal, M. (2020). Protective effect of curcumin nanoparticles against cardiotoxicity induced by doxorubicin in rat. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1866(5), 165665.
- Mohanty, C., & Pradhan, J. (2020). A human epidermal growth factor-curcumin bandage bioconjugate loaded with mesenchymal stem cell for in vivo diabetic wound healing. Materials Science and Engineering: C, 111, 110751.
- Mohanty, C., & Sahoo, S. K. (2017). Curcumin and its topical formulations for wound healing applications. Drug Discovery Today, 22(10), 1582–1592.
- Mokbel, K. E.-D. M., Baiuomy, I. R., Sabry, A. E.-H. A., Mohammed, M. M., & El-Dardiry, M. A. (2020). In vivo assessment of the antischistosomal activity of curcumin loaded nanoparticles versus praziquantel in the treatment of Schistosoma mansoni. Scientific Reports, 10(1), 1–9.
- Morimoto, T., Sunagawa, Y., Katanasaka, Y., Hirano, S., Namiki, M., Watanabe, Y., … Yamauchi, M. (2013). Drinkable preparation of Theracurmin exhibits high absorption efficiency—A single-dose, double-blind, 4-way crossover study. Biological and Pharmaceutical Bulletin, 36(11), 1708–1714.
- Morton, L. M., & Phillips, T. J. (2016). Wound healing and treating wounds: Differential diagnosis and evaluation of chronic wounds. Journal of the American Academy of Dermatology, 74(4), 589–605.
- Moss, D. M., Curley, P., Kinvig, H., Hoskins, C., & Owen, A. (2018). The biological challenges and pharmacological opportunities of orally administered nanomedicine delivery. Expert Review of Gastroenterology & Hepatology, 12(3), 223–236.
- Motavaf, M., Sadeghizadeh, M., Babashah, S., Zare, L., & Javan, M. (2020). Dendrosomal nanocurcumin promotes remyelination through induction of oligodendrogenesis in experimental demyelination animal model. Journal of Tissue Engineering and Regenerative Medicine, 14, 1449–1464.
- Muankaew, C., & Loftsson, T. (2018). Cyclodextrin-based formulations: A non-invasive platform for targeted drug delivery. Basic & Clinical Pharmacology & Toxicology, 122(1), 46–55.
- Mulik, R. S., Mönkkönen, J., Juvonen, R. O., Mahadik, K. R., & Paradkar, A. R. (2010). ApoE3 mediated poly (butyl) cyanoacrylate nanoparticles containing curcumin: Study of enhanced activity of curcumin against beta amyloid induced cytotoxicity using in vitro cell culture model. Molecular Pharmaceutics, 7(3), 815–825.
- Mursaleen, L., Somavarapu, S., & Zariwala, M. G. (2020). Deferoxamine and curcumin loaded nanocarriers protect against rotenone-induced neurotoxicity. Journal of Parkinson's Disease, 10(1), 99–111.
- Murthy, K. C., Monika, P., Jayaprakasha, G., & Patil, B. S. (2018). Nanoencapsulation: An advanced nanotechnological approach to enhance the biological efficacy of curcumin. In Advances in plant Phenolics: From chemistry to human health (pp. 383–405). Washington, DC: ACS Publications.
10.1021/bk-2018-1286.ch021 Google Scholar
- Nabila, N., Suada, N. K., Denis, D., Yohan, B., Adi, A. C., Veterini, A. S., … Rachmawati, H. (2020). Antiviral action of curcumin encapsulated in nanoemulsion against four serotypes of dengue virus. Pharmaceutical Nanotechnology, 8(1), 54–62.
- Naksuriya, O., Okonogi, S., Schiffelers, R. M., & Hennink, W. E. (2014). Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials, 35(10), 3365–3383.
- Nazari-Vanani, R., Moezi, L., & Heli, H. (2017). In vivo evaluation of a self-nanoemulsifying drug delivery system for curcumin. Biomedicine & Pharmacotherapy, 88, 715–720.
- Negahdari, R., Bohlouli, S., Sharifi, S., Maleki Dizaj, S., Rahbar Saadat, Y., Khezri, K., … Raeesi, S. (2021). Therapeutic benefits of rutin and its nanoformulations. Phytotherapy Research, 35(4), – 1719–1738.
- Ng, Z. Y., Wong, J.-Y., Panneerselvam, J., Madheswaran, T., Kumar, P., Pillay, V., … Wark, P. (2018). Assessing the potential of liposomes loaded with curcumin as a therapeutic intervention in asthma. Colloids and Surfaces B: Biointerfaces, 172, 51–59.
- Niemirowicz, K., Durnaś, B., Piktel, E., & Bucki, R. (2017). Development of antifungal therapies using nanomaterials. Nanomedicine, 12(15), 1891–1905.
- Niranjan, R. (2014). The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson's disease: Focus on astrocytes. Molecular Neurobiology, 49(1), 28–38.
- No, D. S., Algburi, A., Huynh, P., Moret, A., Ringard, M., Comito, N., … Chikindas, M. L. (2017). Antimicrobial efficacy of curcumin nanoparticles against Listeria monocytogenes is mediated by surface charge. Journal of Food Safety, 37(4), e12353.
- Öien, R., & Ragnarson Tennvall, G. (2006). Accurate diagnosis and effective treatment of leg ulcers reduce prevalence, care time and costs. Journal of Wound Care, 15(6), 259–262.
- Omar, A., Wright, J. B., Schultz, G., Burrell, R., & Nadworny, P. (2017). Microbial biofilms and chronic wounds. Microorganisms, 5(1), 9.
- Oyeyemi, O., Morenkeji, O., Afolayan, F., Dauda, K., Busari, Z., Meena, J., & Panda, A. (2018). Curcumin-artesunate based polymeric nanoparticle; antiplasmodial and toxicological evaluation in murine model. Frontiers in Pharmacology, 9, 562.
- Pacho, M. N., Pugni, E. N., Díaz Sierra, J. B., Morell, M. L., Sepúlveda, C. S., Damonte, E. B., … D'Accorso, N. B. (2021). Antiviral activity against Zika virus of a new formulation of curcumin in poly lactic-co-glycolic acid nanoparticles. Journal of Pharmacy and Pharmacology, 73, 357–365.
- Palmieri, V., Bugli, F., Cacaci, M., Perini, G., Maio, F. D., Delogu, G., … Spirito, M. D. (2018). Graphene oxide coatings prevent Candida albicans biofilm formation with a controlled release of curcumin-loaded nanocomposites. Nanomedicine, 13(22), 2867–2879.
- Parohan, M., Sarraf, P., Javanbakht, M. H., Foroushani, A. R., Ranji-Burachaloo, S., & Djalali, M. (2021). The synergistic effects of nano-curcumin and coenzyme Q10 supplementation in migraine prophylaxis: A randomized, placebo-controlled, double-blind trial. Nutritional Neuroscience, 24(4), 317–326.
- Pascual, J. (2015). CGRP antibodies: The holy grail for migraine prevention? The Lancet. Neurology, 14(11), 1066–1067.
- Pasquel, F. J., Lansang, M. C., Dhatariya, K., & Umpierrez, G. E. (2021). Management of diabetes and hyperglycaemia in the hospital. The Lancet Diabetes & Endocrinology, 9, 174–188.
- Patel, S. S., Acharya, A., Ray, R., Agrawal, R., Raghuwanshi, R., & Jain, P. (2020). Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Critical Reviews in Food Science and Nutrition, 60(6), 887–939.
- Patil, S., Choudhary, B., Rathore, A., Roy, K., & Mahadik, K. (2015). Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells. Phytomedicine, 22(12), 1103–1111.
- Pattayil, A. J., & Jayaprabha, K. N. (2016). Curcumin coated magnetite nanoparticles for biomedical applications. Google Patents.
- Pattayil, A. J., & Jayaprabha, K. N. (2017). Curcumin coated magnetite nanoparticles for biomedical applications. Google Patents.
- Paul, S., Mohanram, K., & Kannan, I. (2018). Antifungal activity of curcumin-silver nanoparticles against fluconazole-resistant clinical isolates of Candida species. Ayu, 39(3), 182–186.
- Perera, W., Dissanayake, R. K., Ranatunga, U., Hettiarachchi, N., Perera, K., Unagolla, J. M., … Pahalagedara, L. (2020). Curcumin loaded zinc oxide nanoparticles for activity-enhanced antibacterial and anticancer applications. RSC Advances, 10(51), 30785–30795.
- Pescosolido, N., Giannotti, R., Plateroti, A. M., Pascarella, A., & Nebbioso, M. (2014). Curcumin: Therapeutical potential in ophthalmology. Planta Medica, 80(04), 249–254.
- Petry, K. G., Boiziau, C., Dousset, V., & Brochet, B. (2007). Magnetic resonance imaging of human brain macrophage infiltration. Neurotherapeutics, 4(3), 434–442.
- Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. International Journal of Biomedical Science, 4(2), 89–96.
- Pichler, M., & Hocker, S. (2017). Management of status epilepticus. In Handbook of clinical neurology (Vol. 140, pp. 131–151). Amsterdam, Netherlands: Elsevier.
- Pieretti, S., Ranjan, A. P., Di Giannuario, A., Mukerjee, A., Marzoli, F., Di Giovannandrea, R., & Vishwanatha, J. K. (2017). Curcumin-loaded poly (d, l-lactide-co-glycolide) nanovesicles induce antinociceptive effects and reduce pronociceptive cytokine and BDNF release in spinal cord after acute administration in mice. Colloids and Surfaces B: Biointerfaces, 158, 379–386.
- Pontes-Quero, G. M., Benito-Garzón, L., Cano, J. P., Aguilar, M. R., & Vázquez-Lasa, B. (2021). Amphiphilic polymeric nanoparticles encapsulating curcumin: Antioxidant, anti-inflammatory and biocompatibility studies. Materials Science and Engineering: C, 121, 111793.
- Pote, A. K., Pande, V. V., Patel, V. P., Giri, M. A., Bhalke, R. D., & Pund, A. U. (2021). Design & Development of Curcumin loaded zinc oxide nanoparticles decorated Mesoporous silica liquid stitches: A proof of concept in animals. Materials Technology, 1–14.
- Prado-Audelo, D., María, L., Caballero-Florán, I. H., Meza-Toledo, J. A., Mendoza-Muñoz, N., González-Torres, M., … Leyva-Gómez, G. (2019). Formulations of curcumin nanoparticles for brain diseases. Biomolecules, 9(2), 56.
- Prasanna, A., Niranjan, R., Kaushik, M., Devasena, T., Kumar, J., Chelliah, R., … Swaminathan, S. (2018). Metal oxide curcumin incorporated polymer patches for wound healing. Applied Surface Science, 449, 603–609.
- Preis, E., Baghdan, E., Agel, M. R., Anders, T., Pourasghar, M., Schneider, M., & Bakowsky, U. (2019). Spray dried curcumin loaded nanoparticles for antimicrobial photodynamic therapy. European Journal of Pharmaceutics and Biopharmaceutics, 142, 531–539.
- Priya, P., Raj, R. M., Vasanthakumar, V., & Raj, V. (2020). Curcumin-loaded layer-by-layer folic acid and casein coated carboxymethyl cellulose/casein nanogels for treatment of skin cancer. Arabian Journal of Chemistry, 13(1), 694–708.
- Purpura, M., Lowery, R. P., Wilson, J. M., Mannan, H., Münch, G., & Razmovski-Naumovski, V. (2018). Analysis of different innovative formulations of curcumin for improved relative oral bioavailability in human subjects. European Journal of Nutrition, 57(3), 929–938.
- Rafiee, Z., Nejatian, M., Daeihamed, M., & Jafari, S. M. (2019). Application of curcumin-loaded nanocarriers for food, drug and cosmetic purposes. Trends in Food Science & Technology, 88, 445–458.
- Rai, M., Ingle, A. P., Pandit, R., Paralikar, P., Anasane, N., & Santos, C. A. D. (2020). Curcumin and curcumin-loaded nanoparticles: Antipathogenic and antiparasitic activities. Expert Review of Anti-Infective Therapy, 18(4), 367–379.
- Rai, M., Yadav, A., Ingle, A. P., Reshetilov, A., Blanco-Prieto, M. J., & Feitosa, C. M. (2019). Neurodegenerative diseases: The real problem and Nanobiotechnological solutions. In Nanobiotechnology in neurodegenerative diseases (pp. 1–17). Berlin, Germany: Springer.
10.1007/978-3-030-30930-5_1 Google Scholar
- Rakotoarisoa, M., Angelov, B., Garamus, V. M., & Angelova, A. (2019). Curcumin-and fish oil-loaded spongosome and cubosome nanoparticles with neuroprotective potential against H2O2-induced oxidative stress in differentiated human SH-SY5Y cells. ACS Omega, 4(2), 3061–3073.
- Ranjbar-Mohammadi, M., Rabbani, S., Bahrami, S. H., Joghataei, M., & Moayer, F. (2016). Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly (ε-caprolactone) electrospun nanofibers. Materials Science and Engineering: C, 69, 1183–1191.
- Rapalli, V. K., Kaul, V., Waghule, T., Gorantla, S., Sharma, S., Roy, A., … Singhvi, G. (2020). Curcumin loaded nanostructured lipid carriers for enhanced skin retained topical delivery: Optimization, scale-up, in-vitro characterization and assessment of ex-vivo skin deposition. European Journal of Pharmaceutical Sciences, 152, 105438.
- Ray, A., Rana, S., Banerjee, D., Mitra, A., Datta, R., Naskar, S., & Sarkar, S. (2016). Improved bioavailability of targeted curcumin delivery efficiently regressed cardiac hypertrophy by modulating apoptotic load within cardiac microenvironment. Toxicology and Applied Pharmacology, 290, 54–65.
- Raza, S. S., Khan, M. M., Ahmad, A., Ashafaq, M., Khuwaja, G., Tabassum, R., … Islam, F. (2011). Hesperidin ameliorates functional and histological outcome and reduces neuroinflammation in experimental stroke. Brain Research, 1420, 93–105.
- Reshmi, C., Suja, P., Manaf, O., Sanu, P., & Sujith, A. (2018). Nanochitosan enriched poly ε-caprolactone electrospun wound dressing membranes: A fine tuning of physicochemical properties, hemocompatibility and curcumin release profile. International Journal of Biological Macromolecules, 108, 1261–1272.
- Rivera, S. J. G., Orellana, P. P. C., García, V. D., Arenas, P. A. L., Andrea, A. M., Campos, L. L., … Palma, A. I. V. (2018). Curcumin-loaded nanoemulsions, method of manufacture, and method of preventive treatment using the same. Google Patents.
- Rodero, C. F., Fioramonti Calixto, G. M., Cristina dos Santos, K., Sato, M. R., Aparecido dos Santos Ramos, M., Miró, M. S., … Sotomayor, C. E. (2018). Curcumin-loaded liquid crystalline systems for controlled drug release and improved treatment of vulvovaginal candidiasis. Molecular Pharmaceutics, 15(10), 4491–4504.
- Saber-Moghaddam, N., Salari, S., Hejazi, S., Amini, M., Taherzadeh, Z., Eslami, S., … Elyasi, S. (2021). Oral nano-curcumin formulation efficacy in management of mild to moderate hospitalized coronavirus disease-19 patients: An open label nonrandomized clinical trial. Phytotherapy Research, 35(5), 2616–2623.
- Sadegh Malvajerd, S., Azadi, A., Izadi, Z., Kurd, M., Dara, T., Dibaei, M., … Hamidi, M. (2018). Brain delivery of curcumin using solid lipid nanoparticles and nanostructured lipid carriers: Preparation, optimization, and pharmacokinetic evaluation. ACS Chemical Neuroscience, 10(1), 728–739.
- Sadegh Malvajerd, S., Izadi, Z., Azadi, A., Kurd, M., Derakhshankhah, H., Sharifzadeh, M., … Hamidi, M. (2019). Neuroprotective potential of curcumin-loaded nanostructured lipid carrier in an animal model of Alzheimer's disease: Behavioral and biochemical evidence. Journal of Alzheimer's Disease, 69(3), 671–686.
- Saeedi, M., Eslamifar, M., & Khezri, K. (2019). Kojic acid applications in cosmetic and pharmaceutical preparations. Biomedicine & Pharmacotherapy, 110, 582–593.
- Saeedi, M., Eslamifar, M., Khezri, K., & Dizaj, S. M. (2019). Applications of nanotechnology in drug delivery to the central nervous system. Biomedicine & Pharmacotherapy, 111, 666–675.
- Saeedi, M., Khezri, K., & Mohammadamini, H. (2021). A comprehensive review of the therapeutic potential of α-arbutin. Phytotherapy Research.
- Sagitha, P., Reshmi, C., Sundaran, S. P., Binoy, A., Mishra, N., & Sujith, A. (2019). In-vitro evaluation on drug release kinetics and antibacterial activity of dextran modified polyurethane fibrous membrane. International Journal of Biological Macromolecules, 126, 717–730.
- Sai, N., Dong, X., Huang, P., You, L., Yang, C., Liu, Y., … Du, Y. (2020). A novel gel-forming solution based on PEG-DSPE/Solutol HS 15 mixed micelles and gellan gum for ophthalmic delivery of curcumin. Molecules, 25(1), 81.
- Salehi, B., Prado-Audelo, D., María, L., Cortés, H., Leyva-Gómez, G., Stojanović-Radić, Z., … Martins, N. (2020). Therapeutic applications of curcumin nanomedicine formulations in cardiovascular diseases. Journal of Clinical Medicine, 9(3), 746.
- Salehi, B., Stojanović-Radić, Z., Matejić, J., Sharifi-Rad, M., Kumar, N. V. A., Martins, N., & Sharifi-Rad, J. (2019). The therapeutic potential of curcumin: A review of clinical trials. European Journal of Medicinal Chemistry, 163, 527–545.
- Salmazi, R., Calixto, G., Bernegossi, J., dos Santos Ramos, M. A., Bauab, T. M., & Chorilli, M. (2015). A curcumin-loaded liquid crystal precursor mucoadhesive system for the treatment of vaginal candidiasis. International Journal of Nanomedicine, 10, 4815.
- Samrot, A. V., Burman, U., Philip, S. A., Shobana, N., & Chandrasekaran, K. (2018). Synthesis of curcumin loaded polymeric nanoparticles from crab shell derived chitosan for drug delivery. Informatics in Medicine Unlocked, 10, 159–182.
10.1016/j.imu.2017.12.010 Google Scholar
- Sandhir, R., Yadav, A., Mehrotra, A., Sunkaria, A., Singh, A., & Sharma, S. (2014). Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington's disease. Neuromolecular Medicine, 16(1), 106–118.
- Sandhiutami, N. M. D., Arozal, W., Louisa, M., Rahmat, D., & Wuyung, P. E. (2021). Curcumin nanoparticle enhances the anticancer effect of Cisplatin by inhibiting PI3K/AKT and JAK/STAT3 pathway in rat ovarian carcinoma induced by DMBA. Frontiers in Pharmacology, 11, 2199.
- Santos, A. C., Pereira, I., Pereira-Silva, M., Ferreira, L., Caldas, M., Collado-González, M., … Veiga, F. (2019). Nanotechnology-based formulations for resveratrol delivery: Effects on resveratrol in vivo bioavailability and bioactivity. Colloids and Surfaces B: Biointerfaces, 180, 127–140.
- Sarika, P., & Nirmala, R. J. (2016). Curcumin loaded gum arabic aldehyde-gelatin nanogels for breast cancer therapy. Materials Science and Engineering: C, 65, 331–337.
- Sarkar, N., & Bose, S. (2019). Liposome-encapsulated curcumin-loaded 3D printed scaffold for bone tissue engineering. ACS Applied Materials & Interfaces, 11(19), 17184–17192.
- Sasaki, H., Sunagawa, Y., Takahashi, K., Imaizumi, A., Fukuda, H., Hashimoto, T., … Fujita, M. (2011). Innovative preparation of curcumin for improved oral bioavailability. Biological and Pharmaceutical Bulletin, 34(5), 660–665.
- Schiborr, C., Kocher, A., Behnam, D., Jandasek, J., Toelstede, S., & Frank, J. (2014). The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Molecular Nutrition & Food Research, 58(3), 516–527.
- Schobert, R., & Biersack, B. (2019). Chemical and biological aspects of garcinol and isogarcinol: Recent developments. Chemistry & Biodiversity, 16(9), e1900366.
- Sebastiammal, S., Fathima, A. S. L., Devanesan, S., AlSalhi, M. S., Henry, J., Govindarajan, M., & Vaseeharan, B. (2020). Curcumin-encased hydroxyapatite nanoparticles as novel biomaterials for antimicrobial, antioxidant and anticancer applications: A perspective of nano-based drug delivery. Journal of Drug Delivery Science and Technology, 57, 101752.
- Sengupta, S. (2014). Clinical translational challenges in nanomedicine. MRS Bulletin, 39(3), 259–264.
- Setthacheewakul, S., Mahattanadul, S., Phadoongsombut, N., Pichayakorn, W., & Wiwattanapatapee, R. (2010). Development and evaluation of self-microemulsifying liquid and pellet formulations of curcumin, and absorption studies in rats. European Journal of Pharmaceutics and Biopharmaceutics, 76(3), 475–485.
- Shailendiran, D., Pawar, N., Chanchal, A., Pandey, R., Bohidar, H., & Verma, A. (2011). Characterization and antimicrobial activity of nanocurcumin and curcumin. Paper presented at the 2011 International Conference on Nanoscience, Technology and Societal Implications.
- Shamsi-Goushki, A., Mortazavi, Z., Mirshekar, M. A., Mohammadi, M., Moradi-Kor, N., Jafari-Maskouni, S., & Shahraki, M. (2020). Comparative effects of Curcumin versus Nano-Curcumin on insulin resistance, serum levels of Apelin and lipid profile in type 2 diabetic rats. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 13, 2337–2346.
- Shanmugam, M. K., Warrier, S., Kumar, A. P., Sethi, G., & Arfuso, F. (2017). Potential role of natural compounds as anti-Angiogenic agents in Cancer. Current Vascular Pharmacology, 15(6), 503–519.
- Shanmugarajan, D., Prabitha, P., Kumar, B. P., & Suresh, B. (2020). Curcumin to inhibit binding of spike glycoprotein to ACE2 receptors: Computational modelling, simulations, and ADMET studies to explore curcuminoids against novel SARS-CoV-2 targets. RSC Advances, 10(52), 31385–31399.
- Sharifi, S., Fathi, N., Memar, M. Y., Hosseiniyan Khatibi, S. M., Khalilov, R., Negahdari, R., … Maleki Dizaj, S. (2020). Anti-microbial activity of curcumin nanoformulations: New trends and future perspectives. Phytotherapy Research, 34, 1926–1946.
- Sharifian, P., Yaslianifard, S., Fallah, P., Aynesazi, S., Bakhtiyari, M., & Mohammadzadeh, M. (2020). Investigating the effect of nano-curcumin on the expression of biofilm regulatory genes of Pseudomonas aeruginosa. Infection and Drug Resistance, 13, 2477–2484.
- Sharma, R. K., Cwiklinski, K., Aalinkeel, R., Reynolds, J. L., Sykes, D. E., Quaye, E., … Schwartz, S. A. (2017). Immunomodulatory activities of curcumin-stabilized silver nanoparticles: Efficacy as an antiretroviral therapeutic. Immunological Investigations, 46(8), 833–846.
- Shoba, G., Joy, D., Joseph, T., Majeed, M., Rajendran, R., & Srinivas, P. (1998). Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Medica, 64, 353–356.
- Shome, S., Talukdar, A. D., Choudhury, M. D., Bhattacharya, M. K., & Upadhyaya, H. (2016). Curcumin as potential therapeutic natural product: A nanobiotechnological perspective. Journal of Pharmacy and Pharmacology, 68(12), 1481–1500.
- Shrotriya, S., Ranpise, N., Satpute, P., & Vidhate, B. (2018). Skin targeting of curcumin solid lipid nanoparticles-engrossed topical gel for the treatment of pigmentation and irritant contact dermatitis. Artificial Cells, Nanomedicine, and Biotechnology, 46(7), 1471–1482.
- Siddique, Y. H., Khan, W., Singh, B. R., & Naqvi, A. H. (2013). Synthesis of alginate-curcumin nanocomposite and its protective role in transgenic Drosophila model of Parkinson's disease. International Scholarly Research Notices, 2013, 794582.
10.1155/2013/794582 Google Scholar
- Singh, A. K., Prakash, P., Singh, R., Nandy, N., Firdaus, Z., Bansal, M., … Mishra, B. (2017). Curcumin quantum dots mediated degradation of bacterial biofilms. Frontiers in Microbiology, 8, 1517.
- Singh, Y. P., Girisa, S., Banik, K., Ghosh, S., Swathi, P., Deka, M., … Fan, L. (2019). Potential application of zerumbone in the prevention and therapy of chronic human diseases. Journal of Functional Foods, 53, 248–258.
- Sookhaklari, R., Geramizadeh, B., Abkar, M., & Moosavi, M. (2019). The neuroprotective effect of BSA-based nanocurcumin against 6-OHDA-induced cell death in SH-SY5Y cells. Avicenna Journal of Phytomedicine, 9(2), 92–100.
- Soumya, K., Snigdha, S., Sugathan, S., Mathew, J., & Radhakrishnan, E. (2017). Zinc oxide–curcumin nanocomposite loaded collagen membrane as an effective material against methicillin-resistant coagulase-negative staphylococci. 3 Biotech, 7(4), 238.
- Souza, J. M. T., de Araujo, A. R., de Carvalho, A. M. A., Amorim, A. D. G. N., Daboit, T. C., de Almeida, J. R. D. S., … Eaton, P. (2020). Sustainably produced cashew gum-capped zinc oxide nanoparticles show antifungal activity against Candida parapsilosis. Journal of Cleaner Production, 247, 119085.
- Sprenger, T., Viana, M., & Tassorelli, C. (2018). Current prophylactic medications for migraine and their potential mechanisms of action. Neurotherapeutics, 15(2), 313–323.
- Stohs, S. J., Chen, O., Ray, S. D., Ji, J., Bucci, L. R., & Preuss, H. G. (2020). Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application: A review. Molecules, 25(6), 1397.
- Stohs, S. J., Ji, J., Bucci, L. R., & Preuss, H. G. (2018). A comparative pharmacokinetic assessment of a novel highly bioavailable curcumin formulation with 95% curcumin: A randomized, double-blind, crossover study. Journal of the American College of Nutrition, 37(1), 51–59.
- Su, H., Han, L., & Huang, X. (2018). Potential targets for the development of new antifungal drugs. The Journal of Antibiotics, 71(12), 978–991.
- Subtaweesin, C., Woraharn, W., Taokaew, S., Chiaoprakobkij, N., Sereemaspun, A., & Phisalaphong, M. (2018). Characteristics of curcumin-loaded bacterial cellulose films and anticancer properties against malignant melanoma skin cancer cells. Applied Sciences, 8(7), 1188.
10.3390/app8071188 Google Scholar
- Sudirman, S., Lai, C.-S., Yan, Y.-L., Yeh, H.-I., & Kong, Z.-L. (2019). Histological evidence of chitosan-encapsulated curcumin suppresses heart and kidney damages on streptozotocin-induced type-1 diabetes in mice model. Scientific Reports, 9(1), 1–11.
- Sufi, S. A., Hoda, M., Pajaniradje, S., Mukherjee, V., Coumar, S. M., & Rajagopalan, R. (2020). Enhanced drug retention, sustained release, and anti-cancer potential of curcumin and indole-curcumin analog-loaded polysorbate 80-stabilizied PLGA nanoparticles in colon cancer cell line SW480. International Journal of Pharmaceutics, 588, 119738.
- Sunagawa, Y., Hirano, S., Katanasaka, Y., Miyazaki, Y., Funamoto, M., Okamura, N., … Yokoji, T. (2015). Colloidal submicron-particle Curcumin exhibits high absorption efficiency—A double-blind, 3-way crossover study—. Journal of Nutritional Science and Vitaminology, 61(1), 37–44.
- Suwannateep, N., Wanichwecharungruang, S., Haag, S., Devahastin, S., Groth, N., Fluhr, J., … Meinke, M. (2012). Encapsulated curcumin results in prolonged curcumin activity in vitro and radical scavenging activity ex vivo on skin after UVB-irradiation. European Journal of Pharmaceutics and Biopharmaceutics, 82(3), 485–490.
- Szunerits, S., Melinte, S., Barras, A., Pagneux, Q., Voronova, A., Abderrahmani, A., & Boukherroub, R. (2021). The impact of chemical engineering and technological advances on managing diabetes: Present and future concepts. Chemical Society Reviews, 50, 2102–2146.
- Takeda, S., Hirayama, A., Urata, S., Mano, N., Fukagawa, K., Imamura, M., … Nomiyama, M. (2011). Cannabidiol-2′, 6′-dimethyl ether as an effective protector of 15-lipoxygenase-mediated low-density lipoprotein oxidation in vitro. Biological and Pharmaceutical Bulletin, 34(8), 1252–1256.
- Talebi, M., Talebi, M., Farkhondeh, T., & Samarghandian, S. (2021). Biological and therapeutic activities of thymoquinone: Focus on the Nrf2 signaling pathway. Phytotherapy Research, 35(4), 1739–1753.
- Tavakol, S., Zare, S., Hoveizi, E., Tavakol, B., & Rezayat, S. M. (2019). The impact of the particle size of curcumin nanocarriers and the ethanol on beta_1-integrin overexpression in fibroblasts: A regenerative pharmaceutical approach in skin repair and anti-aging formulations. DARU Journal of Pharmaceutical Sciences, 27(1), 159–168.
- Tavano, L., Muzzalupo, R., Picci, N., & de Cindio, B. (2014). Co-encapsulation of lipophilic antioxidants into niosomal carriers: Percutaneous permeation studies for cosmeceutical applications. Colloids and Surfaces B: Biointerfaces, 114, 144–149.
- Teng, F., Deng, P., Song, Z., Zhou, F., & Feng, R. (2017). Enhanced effect in combination of curcumin-and ketoconazole-loaded methoxy poly (ethylene glycol)-poly (ε-caprolactone) micelles. Biomedicine & Pharmacotherapy, 88, 43–51.
- Teow, S.-Y., Liew, K., Ali, S. A., Khoo, A. S.-B., & Peh, S.-C. (2016). Antibacterial action of curcumin against Staphylococcus aureus: A brief review. Journal of Tropical Medicine, 2016, 1–10.
- Thomsen, G. M., Gowing, G., Svendsen, S., & Svendsen, C. N. (2014). The past, present and future of stem cell clinical trials for ALS. Experimental Neurology, 262, 127–137.
- Tong, W. Y., Bin Abdullah, A. Y. K., Binti Rozman, N. A. S., Bin Wahid, M. I. A., Hossain, M. S., Ring, L. C., … Tan, W.-N. (2018). Antimicrobial wound dressing film utilizing cellulose nanocrystal as drug delivery system for curcumin. Cellulose, 25(1), 631–638.
- Trigo Gutierrez, J. K., Zanatta, G. C., Ortega, A. L. M., Balastegui, M. I. C., Sanita, P. V., Pavarina, A. C., … Mima, E. G. D. O. (2017). Encapsulation of curcumin in polymeric nanoparticles for antimicrobial photodynamic therapy. PLoS One, 12(11), e0187418.
- Tripathi, P. K., Gupta, S., Rai, S., Shrivatava, A., Tripathi, S., Singh, S., … Kesharwani, P. (2020). Curcumin loaded poly (amidoamine) dendrimer-plamitic acid core-shell nanoparticles as anti-stress therapeutics. Drug Development and Industrial Pharmacy, 46(3), 412–426.
- Tripodo, G., Chlapanidas, T., Perteghella, S., Vigani, B., Mandracchia, D., Trapani, A., … Gaetani, P. (2015). Mesenchymal stromal cells loading curcumin-INVITE-micelles: A drug delivery system for neurodegenerative diseases. Colloids and Surfaces B: Biointerfaces, 125, 300–308.
- Tu, K. N., Lie, J. D., Wan, C. K. V., Cameron, M., Austel, A. G., Nguyen, J. K., … Hyun, D. (2018). Osteoporosis: A review of treatment options. Pharmacy and Therapeutics, 43(2), 92–104.
- Tysnes, O.-B., & Storstein, A. (2017). Epidemiology of Parkinson's disease. Journal of Neural Transmission, 124(8), 901–905.
- Udompornmongkol, P., & Chiang, B.-H. (2015). Curcumin-loaded polymeric nanoparticles for enhanced anti-colorectal cancer applications. Journal of Biomaterials Applications, 30(5), 537–546.
- Vafadar_afshar, G., Khadem-Ansari, M.-H., Makhdomii, K., & Rasooli, J. (2020). The effects of Nano-curcumin supplementation on serum level of hs-CRP, adhesion molecules, and lipid profiles in hemodialysis patients, a randomized controlled clinical trial. Iranian Journal of Kidney Diseases, 14(1), 52–61.
- Vareed, S. K., Kakarala, M., Ruffin, M. T., Crowell, J. A., Normolle, D. P., Djuric, Z., & Brenner, D. E. (2008). Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiology and Prevention Biomarkers, 17(6), 1411–1417.
- Velier, M., Magalon, J., Daumas, A., Cassar, M., Francois, P., Ghazouane, A., … Bernot, D. (2018). Production of platelet-rich plasma gel from elderly patients under antithrombotic drugs: Perspectives in chronic wounds care. Platelets, 29(5), 496–503.
- Venkatasubbu, G. D., & Anusuya, T. (2017). Investigation on Curcumin nanocomposite for wound dressing. International Journal of Biological Macromolecules, 98, 366–378.
- Vitali, D., Bagri, P., Wessels, J. M., Arora, M., Ganugula, R., Parikh, A., … Kumar, M. (2020). Curcumin can decrease tissue inflammation and the severity of HSV-2 infection in the female reproductive mucosa. International Journal of Molecular Sciences, 21(1), 337.
- Wang, W., Chen, T., Xu, H., Ren, B., Cheng, X., Qi, R., … Chen, S. (2018). Curcumin-loaded solid lipid nanoparticles enhanced anticancer efficiency in breast cancer. Molecules, 23(7), 1578.
- Wanker, E. E. (2000). Protein aggregation and pathogenesis of Huntingtons disease: Mechanisms and correlations. Biological Chemistry, 381(9–10), 937–942.
- Wick, P., Manser, P., Limbach, L. K., Dettlaff-Weglikowska, U., Krumeich, F., Roth, S., … Bruinink, A. (2007). The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicology Letters, 168(2), 121–131.
- Xu, L., Zhang, H., & Wu, Y. (2014). Dendrimer advances for the central nervous system delivery of therapeutics. ACS Chemical Neuroscience, 5(1), 2–13.
- Xue, B., Zhang, Y., Xu, M., Wang, C., Huang, J., Zhang, H., … Li, X. (2019). Curcumin-silk fibroin nanoparticles for enhanced anti-Candida albicans activity in vitro and in vivo. Journal of Biomedical Nanotechnology, 15(4), 769–778.
- Yallapu, M. M., Ebeling, M. C., Chauhan, N., Jaggi, M., & Chauhan, S. C. (2011). Interaction of curcumin nanoformulations with human plasma proteins and erythrocytes. International Journal of Nanomedicine, 6, 2779.
- Yallapu, M. M., Gupta, B. K., Jaggi, M., & Chauhan, S. C. (2010). Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. Journal of Colloid and Interface Science, 351(1), 19–29.
- Yallapu, M. M., Khan, S., Maher, D. M., Ebeling, M. C., Sundram, V., Chauhan, N., … Zafar, N. (2014). Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer. Biomaterials, 35(30), 8635–8648.
- Yan, J., & Greer, J. M. (2008). NF-κB, a potential therapeutic target for the treatment of multiple sclerosis. CNS & Neurological Disorders-Drug Targets, 7(6), 536–557.
- Yan, M. H., Wang, X., & Zhu, X. (2013). Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radical Biology and Medicine, 62, 90–101.
- Yang, R., Zheng, Y., Wang, Q., & Zhao, L. (2018). Curcumin-loaded chitosan–bovine serum albumin nanoparticles potentially enhanced Aβ 42 phagocytosis and modulated macrophage polarization in Alzheimer's disease. Nanoscale Research Letters, 13(1), 330.
- Yang, S.-T., Wang, X., Jia, G., Gu, Y., Wang, T., Nie, H., … Liu, Y. (2008). Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicology Letters, 181(3), 182–189.
- Yang, X. X., Li, C. M., Li, Y. F., Wang, J., & Huang, C. Z. (2017). Synergistic antiviral effect of curcumin functionalized graphene oxide against respiratory syncytial virus infection. Nanoscale, 9(41), 16086–16092.
- Yavarpour-Bali, H., Ghasemi-Kasman, M., & Pirzadeh, M. (2019). Curcumin-loaded nanoparticles: A novel therapeutic strategy in treatment of central nervous system disorders. International Journal of Nanomedicine, 14, 4449–4460.
- Zahiri, M., Khanmohammadi, M., Goodarzi, A., Ababzadeh, S., Farahani, M. S., Mohandesnezhad, S., … Ai, J. (2020). Encapsulation of curcumin loaded chitosan nanoparticle within poly (ε-caprolactone) and gelatin fiber mat for wound healing and layered dermal reconstitution. International Journal of Biological Macromolecules, 153, 1241–1250.
- Zambrano, L. M., Brandao, D. A., Rocha, F. R., Marsiglio, R. P., Longo, I. B., Primo, F. L., … Junior, C. R. (2018). Local administration of curcumin-loaded nanoparticles effectively inhibits inflammation and bone resorption associated with experimental periodontal disease. Scientific Reports, 8(1), 1–11.
- Zhang, L., Yang, S., Wong, L. R., Xie, H., & Ho, P. C.-L. (2020). In vitro and in vivo comparison of Curcumin-encapsulated chitosan-coated poly (lactic-co-glycolic acid) nanoparticles and Curcumin/Hydroxypropyl-β-Cyclodextrin inclusion complexes administered Intranasally as therapeutic strategies for Alzheimer's disease. Molecular Pharmaceutics, 17(11), 4256–4269.
- Zhang, L., Zhang, Y., Du, Y., Wang, J., & Chi, L. (2020). Development of curcumin-loaded silk fibroin nanoparticles as drug delivery vehicle for the treatment of ischemic stroke for patients in nursing care in hospitals. Journal of Drug Delivery Science and Technology, 55, 101360.
- Zhang, N., Yan, F., Liang, X., Wu, M., Shen, Y., Chen, M., … Tang, C. (2018). Localized delivery of curcumin into brain with polysorbate 80-modified cerasomes by ultrasound-targeted microbubble destruction for improved Parkinson's disease therapy. Theranostics, 8(8), 2264–2277.
- Zhang, X., Li, X., Hua, H., Wang, A., Liu, W., Li, Y., … Sun, K. (2017). Cyclic hexapeptide-conjugated nanoparticles enhance curcumin delivery to glioma tumor cells and tissue. International Journal of Nanomedicine, 12, 5717–5732.
- Zhang, Z., Han, S., Liu, P., Yang, X., Han, J., Wang, A., & Zhang, J. (2020). Healing effects of Curcumin nanoparticles in deep tissue injury mouse model. Current Drug Delivery, 18.
10.2174/1567201818666201214125237 Google Scholar
- Zheng, J., Cheng, J., Zheng, S., Feng, Q., & Xiao, X. (2018). Curcumin, a polyphenolic curcuminoid with its protective effects and molecular mechanisms in diabetes and diabetic cardiomyopathy. Frontiers in Pharmacology, 9, 472.