Tunable Electronic Properties and Giant Spontaneous Polarization in Graphene/Monolayer GeS van der Waals Heterostructure
Corresponding Author
Qianjin Wang
College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, Yunnan Province, China
Yunnan Provincial Key Laboratory for Photoelectric Information Technology, Yunnan Normal University, Kunming 650500, Yunnan Province, China
Search for more papers by this authorQiuhong Tan
College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, Yunnan Province, China
Yunnan Provincial Key Laboratory for Photoelectric Information Technology, Yunnan Normal University, Kunming 650500, Yunnan Province, China
Search for more papers by this authorYingkai Liu
College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, Yunnan Province, China
Yunnan Provincial Key Laboratory for Photoelectric Information Technology, Yunnan Normal University, Kunming 650500, Yunnan Province, China
Search for more papers by this authorChen Qing
College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, Yunnan Province, China
Yunnan Provincial Key Laboratory for Photoelectric Information Technology, Yunnan Normal University, Kunming 650500, Yunnan Province, China
Search for more papers by this authorXiaobo Feng
College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, Yunnan Province, China
Yunnan Provincial Key Laboratory for Photoelectric Information Technology, Yunnan Normal University, Kunming 650500, Yunnan Province, China
Search for more papers by this authorDapeng Yu
Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
Search for more papers by this authorCorresponding Author
Qianjin Wang
College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, Yunnan Province, China
Yunnan Provincial Key Laboratory for Photoelectric Information Technology, Yunnan Normal University, Kunming 650500, Yunnan Province, China
Search for more papers by this authorQiuhong Tan
College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, Yunnan Province, China
Yunnan Provincial Key Laboratory for Photoelectric Information Technology, Yunnan Normal University, Kunming 650500, Yunnan Province, China
Search for more papers by this authorYingkai Liu
College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, Yunnan Province, China
Yunnan Provincial Key Laboratory for Photoelectric Information Technology, Yunnan Normal University, Kunming 650500, Yunnan Province, China
Search for more papers by this authorChen Qing
College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, Yunnan Province, China
Yunnan Provincial Key Laboratory for Photoelectric Information Technology, Yunnan Normal University, Kunming 650500, Yunnan Province, China
Search for more papers by this authorXiaobo Feng
College of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, Yunnan Province, China
Yunnan Provincial Key Laboratory for Photoelectric Information Technology, Yunnan Normal University, Kunming 650500, Yunnan Province, China
Search for more papers by this authorDapeng Yu
Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
Search for more papers by this authorAbstract
Van der Waals (vdW) heterostructures consisting of two-dimensional-layered nanomaterials have attracted great attention due to their promising applications in novel electronic and optoelectronic devices. Using density functional theory (DFT) with the vdW correlations (DFT-D), the electronic properties and spontaneous polarization of graphene/monolayer GeS (G/MGeS) heterostructure have been investigated. It is found that the properties of both graphene and GeS are preserved in the vdW heterostructure, and the electronic structure of the heterostructure is advantageous for improving photocatalytic efficiency. Moreover, it is also found that the position of the band structure of GeS with respect to that of graphene can be tuned by altering the interlayer spacing, which further led to the control of the Schottky barrier height of the vdW heterostructures. Additionally, the vdW heterostructure shows increased spontaneous polarization (186.6 μC cm−2) as well as increased energy barrier heights, which indicate the enhanced ferroelectricity in the heterostructure. Further investigation demonstrates that the compressive strain can have a significant impact on both the spontaneous polarization and the energy barrier height of the vdW heterostructure.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1 A. Sinitskii, Science 2018, 360, 154.
- 2 K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, Nature 2012, 490, 192.
- 3 A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
- 4 L. Schue, L. Sponza, A. Plaud, H. Bensalah, K. Watanabe, T. Taniguchi, F. Ducastelle, A. Loiseau, J. Barjon, Phys. Rev. Lett. 2019, 122, 067401.
- 5 J. H. Warner, M. H. Rummeli, A. Bachmatiuk, B. Buchner, ACS Nano 2010, 4, 1299.
- 6 C. Y. Zhi, Y. Bando, C. C. Tang, H. Kuwahara, D. Golberg, Adv. Mater. 2009, 21, 2889.
- 7 M. X. Deng, G. Y. Qi, W. Luo, R. Ma, R. Q. Wang, R. Shen, L. Sheng, D. Y. Xing, Phys. Rev. B 2019, 99, 085106.
- 8 M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, H. Zhang, Nat. Chem. 2013, 5, 263.
- 9 Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol. 2012, 7, 699.
- 10 A. Splendiani, L. Sun, Y. B. Zhang, T. S. Li, J. Kim, C. Y. Chim, G. Galli, F. Wang, Nano Lett. 2010, 10, 1271.
- 11 P. T. T. Le, N. N. Hieu, L. M. Bui, H. V. Phuc, B. D. Hoi, B. Amin, C. V. Nguyen, Phys. Chem. Chem. Phys. 2018, 20, 27856.
- 12 P. Wu, T. Ameen, H. R. Zhang, L. A. Bendersky, H. Ilatikhameneh, G. Klimeck, R. Rahman, A. V. Davydov, J. Appenzeller, ACS Nano 2019, 13, 377.
- 13 L. Kavalsky, S. Mukherjee, C. V. Singh, ACS Appl. Mater. Inter. 2019, 11, 499.
- 14 S. Arra, R. Babar, M. Kabir, Phys. Rev. B 2019, 99, 045432.
- 15 J. L. Zhang, C. Han, Z. H. Hu, L. Wang, L. Liu, A. T. S. Wee, W. Chen, Adv. Mater. 2018, 30, 1802207.
- 16 H. L. You, Y. M. Jia, Z. Wu, F. F. Wang, H. T. Huang, Y. Wang, Nat. Commun. 2018, 9, 2889.
- 17 Q. H. Tan, Q. J. Wang, Y. K. Liu, C. S. Liu, X. B. Feng, D. P. Yu, J. Phys.: Condens. Mat. 2018, 30, 305304.
- 18 X. L. Sun, B. T. Zhang, Y. L. Li, X. Y. Luo, G. R. Li, Y. X. Chen, C. Q. Zhang, J. L. He, ACS Nano 2018, 12, 11376.
- 19 M. J. Mohn, R. Hambach, P. Wachsmuth, C. Giorgetti, U. Kaiser, Phys. Rev. B 2018, 97, 235410.
- 20 D. Pierucci, H. Henck, J. Avila, A. Balan, C. H. Naylor, G. Patriarche, Y. J. Dappe, M. G. Silly, F. Sirotti, A. T. C. Johnson, M. C. Asensio, A. Ouerghi, Nano Lett. 2016, 16, 4054.
- 21 J. A. Miwa, M. Dendzik, S. S. Gronborg, M. Bianchi, J. V. Lauritsen, P. Hofmann, S. Ulstrup, ACS Nano 2015, 9, 6502.
- 22 J. Zeng, W. Chen, P. Cui, D. B. Zhang, Z. Y. Zhang, Phys. Rev. B 2016, 94, 235425.
- 23 A. Ramasubramaniam, D. Naveh, E. Towe, Nano Lett. 2011, 11, 1070.
- 24 C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, J. Hone, Nat. Nanotechnol. 2010, 5, 722.
- 25 C. Li, J. X. Gao, Y. B. Zi, F. Wang, C. Y. Niu, J. H. Cho, Y. Jia, Carbon 2018, 140, 164.
- 26 B. Liu, L. J. Wu, Y. Q. Zhao, L. Z. Wang, M. Q. Caii, Phys. Chem. Chem. Phys. 2016, 18, 19918.
- 27 J. E. Padilha, A. Fazzio, A. J. R. da Silva, Phys. Rev. Lett. 2015, 114, 066803.
- 28 Y. Li, W. T. Wu, F. Ma, J. Mater. Chem. A 2019, 7, 611.
- 29 X. R. Hu, J. M. Zheng, Z. Y. Ren, Front. Phys. 2018, 13, 137302.
- 30 Z. Ben Aziza, H. Henck, D. Pierucci, M. G. Silly, E. Lhuillier, G. Patriarche, F. Sirotti, M. Eddrief, A. Ouerghi, ACS Nano 2016, 10, 9679.
- 31 W. Kim, C. F. Li, F. A. Chaves, D. Jimenez, R. D. Rodriguez, J. Susoma, M. A. Fenner, H. Lipsanen, J. Riikonen, Adv. Mater. 2016, 28, 1845.
- 32 Z. Ben Aziza, D. Pierucci, H. Henck, M. G. Silly, C. David, M. Yoon, F. Sirotti, K. Xiao, M. Eddrief, J. C. Girard, A. Ouerghi, Phys. Rev. B 2017, 96, 035407.
- 33 K. D. Pham, N. N. Hieu, H. V. Phuc, I. A. Fedorov, C. A. Duque, B. Amin, C. V. Nguyen, Appl. Phys. Lett. 2018, 113, 171605.
- 34 H. V. Phuc, N. N. Hieu, B. D. Hoi, C. V. Nguyen, Phys. Chem. Chem. Phys. 2018, 20, 17899.
- 35 G. S. Shi, E. Kioupakis, Nano Lett. 2015, 15, 6926.
- 36 T. Rangel, B. M. Fregoso, B. S. Mendoza, T. Morimoto, J. E. Moore, J. B. Neaton, Phys. Rev. Lett. 2017, 119, 067402.
- 37 H. Wang, X. F. Qian, 2D Mater. 2017, 4, 015042.
- 38 M. H. Wu, X. C. Zeng, Nano Lett. 2016, 16, 3236.
- 39 R. X. Fei, W. B. Li, J. Li, L. Yang, Appl. Phys. Lett. 2015, 107, 173104.
- 40 L. C. Gomes, A. Carvalho, A. H. C. Neto, Phys. Rev. B 2015, 92, 214103.
- 41 F. Li, Y. Y. Qu, M. W. Zhao, J. Mater. Chem. A 2016, 4, 8905.
- 42 Y. G. Zhou, J. Mater. Chem. A 2016, 4, 10906.
- 43 C. Li, L. Huang, G. P. Snigdha, Y. F. Yu, L. Y. Cao, ACS Nano 2012, 6, 8868.
- 44 P. Ramasamy, D. Kwak, D. H. Lim, H. S. Ra, J. S. Lee, J. Mater. Chem. C 2016, 4, 479.
- 45 L. Li, Z. Chen, Y. Hu, X. W. Wang, T. Zhang, W. Chen, Q. B. Wang, J. Am. Chem. Soc. 2013, 135, 1213.
- 46 D. D. Vaughn, R. J. Patel, M. A. Hickner, R. E. Schaak, J. Am. Chem. Soc. 2010, 132, 15170.
- 47 S. L. Zhao, H. A. Wang, Y. Zhou, L. Liao, Y. Jiang, X. Yang, G. C. Chen, M. Lin, Y. Wang, H. L. Peng, Z. F. Liu, Nano Res. 2015, 8, 288.
- 48 C. Chowdhury, S. Karmakar, A. Datta, J. Phys. Chem. C 2017, 121, 7615.
- 49 G. Antonius, D. Y. Qiu, S. G. Louie, Nano Lett. 2018, 18.
- 50 N. Higashitarumizu, H. Kawamoto, M. Nakamura, K. Shimamura, N. Ohashi, K. Ueno, K. Nagashio, Nanoscale 2018, 10, 22474.
- 51 S. H. Ma, D. Y. Yuan, Y. R. Wang, Z. Y. Jiao, J. Mater. Chem. C 2018, 6, 8082.
- 52 N. Wang, D. Cao, J. Wang, P. Liang, X. S. Chen, H. B. Shu, Nanoscale 2018, 10, 12133.
- 53 W. C. Yap, Z. F. Yang, M. Mehboudi, J. A. Yan, S. Barraza-Lopez, W. J. Zhu, Nano Res. 2018, 11, 420.
- 54 X. Kong, J. K. Deng, L. Li, Y. L. Liu, X. D. Ding, J. Sun, J. Z. Liu, Phys. Rev. B 2018, 98, 184104.
- 55 L. Xu, M. Yang, S. J. Wang, Y. P. Feng, Phys. Rev. B 2017, 95, 235434.
- 56 F. Li, X. H. Liu, Y. Wang, Y. F. Li, J. Mater. Chem. C 2016, 4, 2155.
- 57 R. X. Fei, W. Kang, L. Yang, Phys. Rev. Lett. 2016, 117, 097601.
- 58 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J. Phys.: Condens. Mat. 2009, 21, 395502.
- 59 J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 60 P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
- 61 V. Barone, M. Casarin, D. Forrer, M. Pavone, M. Sambi, A. Vittadini, J. Comput. Chem. 2009, 30, 934.
- 62 S. Grimme, J. Comput. Chem. 2006, 27, 1787.
- 63 H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
- 64 M. Methfessel, A. T. Paxton, Phys. Rev. B 1989, 40, 3616.
- 65 W. Q. Xiong, C. X. Xia, X. Zhao, T. X. Wang, Y. Jia, Carbon 2016, 109, 737.
- 66 Y. D. Ma, Y. Dai, W. Wei, C. W. Niu, L. Yu, B. B. Huang, J. Phys. Chem. C 2011, 115, 20237.
- 67 K. Cheng, Y. Guo, N. N. Han, Y. Su, J. F. Zhang, J. J. Zhao, J. Mater. Chem. C 2017, 5, 3788.
- 68 L. C. Gomes, A. Carvalho, Phys. Rev. B 2015, 92, 085406.
- 69 L. Huang, F. G. Wu, J. B. Li, J. Chem. Phys. 2016, 144, 114708.
- 70 S. L. Zhang, N. Wang, S. G. Liu, S. P. Huang, W. H. Zhou, B. Cai, M. Q. Xie, Q. Yang, X. P. Chen, H. B. Zeng, Nanotechnology 2016, 27, 274001.
- 71 J. J. Liu, J. Phys. Chem. C 2015, 119, 28417.
- 72 J. S. Hu, G. P. Ji, X. G. Ma, H. He, C. Y. Huang, Appl. Surf. Sci. 2018, 440, 35.
- 73 Z. Zhang, J. T. Yates, Chem. Rev. 2012, 112, 5520.
- 74 J. Bardeen, Phys. Rev. J. Arch. 1947, 71, 717.
- 75 H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, A. Javey, Proc. Natl. Acad. Sci. USA 2014, 111, 6198.
- 76 S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. B. Li, R. Sinclair, J. Q. Wu, Nano Lett. 2014, 14, 3185.
- 77 R. Resta, Rev. Mod. Phys. 1994, 66, 899.
- 78 D. Vanderbilt, R. D. King-Smith, Phys. Rev. B 1993, 48, 4442.