Structural and Electronic Properties of Oxidized and Amorphous Nanodiamond Surfaces with Covalently Grafted Polypyrrole
Corresponding Author
Petra Matunová
Faculty of Electrical Engineering, Czech Technical University, Technická 2, Prague 6, 166 27, Czech Republic
Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, Prague 6, 162 00, Czech Republic
Search for more papers by this authorVít Jirásek
Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, Prague 6, 162 00, Czech Republic
Search for more papers by this authorBohuslav Rezek
Faculty of Electrical Engineering, Czech Technical University, Technická 2, Prague 6, 166 27, Czech Republic
Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, Prague 6, 162 00, Czech Republic
Search for more papers by this authorCorresponding Author
Petra Matunová
Faculty of Electrical Engineering, Czech Technical University, Technická 2, Prague 6, 166 27, Czech Republic
Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, Prague 6, 162 00, Czech Republic
Search for more papers by this authorVít Jirásek
Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, Prague 6, 162 00, Czech Republic
Search for more papers by this authorBohuslav Rezek
Faculty of Electrical Engineering, Czech Technical University, Technická 2, Prague 6, 166 27, Czech Republic
Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, Prague 6, 162 00, Czech Republic
Search for more papers by this authorAbstract
Diamond nanoparticles denoted as nanodiamonds (NDs) possess numerous beneficial material properties and are envisioned for a wide range of applications. In this work, complexes of polypyrrole (PPy) organic dye covalently grafted to ND surfaces are investigated by atomic scale density functional theory (DFT) computations with a view to their structural and electronic properties. NDs terminated with oxygen, hydroxyl, carboxyl, anhydride, as well as amorphous carbon (a-C:H, a-C:O) have been considered. Thereby the theoretical model is brought close to real nanodiamonds. Spatially separated highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) and a favorable energetic level alignment at the ND–PPy interface are observed for the majority of the oxidized NDs. This feature is also retained for NDs with amorphous surface layer. Excited states are computed by time-dependent DFT to analyze how the electronic configuration can promote dissociation of excitons, for instance in photovoltaic applications.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
pssb201900176-sup-0001-SuppFigs-S1.pdf622.1 KB | Supporting Figures S1. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Y. Masuda, G. Giorgi, K. Yamashita, Phys. Status Solidi B 2014, 251, 1471.
- 2
A. Jaros,
S. Bley,
K. Zimmermann,
L. Krieg,
A. Castro-Carranza,
J. Gutowski,
F. Meierhofer,
T. Voss,
Phys. Status Solidi B
2019,
256, 1800463.
10.1002/pssb.201800463 Google Scholar
- 3 L. Kavan, J.-H. Yum, M. Graetzel, Phys. Status Solidi B 2013, 250, 2643.
- 4 M. Braik, C. Dridi, A. Rybak, J. Davenas, D. Cornu, Phys. Status Solidi A 2014, 211, 670.
- 5 O. A. Shenderova, G. E. McGuire, Biointerphases 2015, 10, 030802.
- 6 S. L. Y. Chang, A. S. Barnard, C. Dwyer, C. B. Boothroyd, R. K. Hocking, E. Ōsawa, R. J. Nicholls, Nanoscale 2016, 8, 10548.
- 7 Z. Shpilman, I. Gouzman, E. Grossman, L. Shen, T. K. Minton, J. T. Paci, G. C. Schatz, R. Akhvlediani, A. Hoffman, J. Phys. Chem. C 2010, 114, 18996.
- 8 A. Krueger, Adv. Mater. 2008, 20, 2445.
- 9 K. Bray, R. Previdi, B. C. Gibson, O. Shimoni, I. Aharonovich, Nanoscale 2015, 7, 4869.
- 10 D. Miliaieva, S. Stehlik, P. Stenclova, B. Rezek, Phys. Status Solidi A 2016, 213, 2687.
- 11 B. Rezek, J. Čermák, A. Kromka, M. Ledinský, J. Kočka, Diam. Relat. Mater. 2009, 18, 249.
- 12 J. Čermák, B. Rezek, A. Kromka, M. Ledinský, J. Kočka, Diam. Relat. Mater. 2009, 18, 1098.
- 13 A. S. Barnard, Nanotechnology 2013, 24, 085703.
- 14 D. Petrini, K. Larsson, J. Phys. Chem. C 2008, 112, 3018.
- 15 D. Petrini, K. Larsson, J. Phys. Chem. C 2007, 111, 795.
- 16 H. Tamura, H. Zhou, K. Sugisako, Y. Yokoi, S. Takami, M. Kubo, K. Teraishi, A. Miyamoto, A. Imamura, N. Mikka, T. Ando, Phys. Rev. B 2000, 61, 11025.
- 17 X. M. Zheng, P. V. Smith, Surf. Sci. 1992, 262, 219.
- 18 P. E. Pehrsson, T. W. Mercer, J. A. Chaney, Surf. Sci. 2002, 497, 13.
- 19 P. John, N. Polwart, C. E. Troupe, J. I. B. Wilson, Diam. Relat. Mater. 2002, 11, 861.
- 20 K. P. Loh, X. N. Xie, Y. H. Lim, E. J. Teo, J. C. Zheng, T. Ando, Surf. Sci. 2002, 505, 93.
- 21 X. Wang, A. R. Ruslinda, Y. Ishiyama, Y. Ishii, H. Kawarada, Diam. Relat. Mater. 2011, 20, 1319.
- 22 W. Kamiński, V. Rozsíval, P. Jelínek, J. Phys.: Condens. Matter 2010, 22, 045003.
- 23 P. Matunová, V. Jirásek, B. Rezek, Phys. Status Solidi A 2016, 213, 2672.
- 24 P. Matunová, V. Jirásek, B. Rezek, in NANOCON 2016, Conference Proceedings: 8th International Conference on Nanomaterials – Research & Application, October 2016, Brno, Czech Republic, Tanger Ltd., Ostrava 2017, pp. 15–19.
- 25 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr. J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 09 (Revision E.01), Gaussian Inc., Wallingford, CT 2016.
- 26 A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- 27 P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
- 28 S. Stehlik, M. Varga, M. Ledinsky, D. Miliaieva, H. Kozak, V. Skakalova, C. Mangler, T. J. Pennycook, J. C. Meyer, A. Kromka, B. Rezek, Sci. Rep. 2016, 6, 38419.
- 29 A. K. Tiwari, J. P. Goss, P. R. Briddon, N. G. Wright, A. B. Horsfall, R. Jones, H. Pinto, M. J. Rayson, Phys. Rev. B 2011, 84, 245305.
- 30 L. Lai, A. S. Barnard, J. Mater. Chem. 2012, 22, 16774.
- 31 S. Goverapet Srinivasan, A. C. T. van Duin, Carbon 2015, 82, 314.
- 32 T. E. Derry, N. W. Makau, C. Stampfl, J. Phys.: Condens. Matter 2010, 22, 265007.
- 33 N. Brown, O. Hod, J. Phys. Chem. C 2014, 118, 5530.
- 34 V. Jirásek, H. Kozak, Z. Remeš, Adv. Sci. Eng. Med. 2015, 7, 275.
- 35 F. Maier, J. Ristein, L. Ley, Phys. Rev. B 2001, 64, 165411.
- 36 K. Bobrov, H. Shechter, A. Hoffman, M. Folman, Appl. Surf. Sci. 2002, 196, 173.
- 37 F. K. de Theije, N. J. van der Laag, M. Plomp, W. J. P. van Enckevort, Philos. Mag. A 2000, 80, 725.
- 38 R. J. Magyar, S. Tretiak, J. Chem. Theory Comput. 2007, 3, 976.
- 39 J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615.
- 40 L. Pandey, C. Doiron, J. S. Sears, J.-L. Brédas, Phys. Chem. Chem. Phys. 2012, 14, 14243.
- 41 I. T. Lima, A. da S. Prado, J. B. L. Martins, P. H. de Oliveira Neto, A. M. Ceschin, W. F. da Cunha, D. A. da Silva Filho, J. Phys. Chem. A 2016, 120, 4944.
- 42 R. K. John, D. S. Kumar, J. Appl. Polym. Sci. 2002, 83, 1856.
- 43 J. L. Brédas, B. Thémans, J. G. Fripiat, J. M. André, R. R. Chance, Phys. Rev. B 1984, 29, 6761.
- 44 L. Micaroni, F. Nart, I. Hümmelgen, J. Solid State Electrochem. 2002, 7, 55.
- 45 S. J. Sque, R. Jones, P. R. Briddon, Phys. Rev. B 2006, 73, 085313.
- 46 D. Bimberg, Physics of Group IV Elements and III-V Compounds. Springer, Berlin 1982.
- 47 A. A. Fokin, P. R. Schreiner, Mol. Phys. 2009, 107, 823.
- 48 T. Yuan, K. Larsson, J. Phys. Chem. C 2014, 118, 26061.
- 49 A. S. Barnard, Cryst. Growth Des. 2009, 9, 4860.
- 50 J. M. Berg, J. L. Tymoczko, L. Stryer, J. M. Berg, J. L. Tymoczko, L. Stryer, Biochemistry, W. H. Freeman, New York 2002.
- 51 S. Dapprich, G. Frenking, J. Phys. Chem. 1995, 99, 9352.