Modified Superexchange Model for Electron Tunneling Across the Terminated Molecular Wire
Corresponding Author
Elmar G. Petrov
Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Metrologichna Street 14-B, UA-03680 Kiev, Ukraine
Search for more papers by this authorCorresponding Author
Elmar G. Petrov
Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Metrologichna Street 14-B, UA-03680 Kiev, Ukraine
Search for more papers by this authorAbstract
The modified superexchange model shows wide possibilities to clarify the mechanism of formation of a tunneling current through terminated molecular wire. The model has no inherent rigid restrictions of the standard superexchange model. This allows to obtain the analytical expressions for the analysis of the current–voltage characteristics of the wire, in which the voltage bias does not destroy the delocalzation of molecular orbitals belonging to the interior region of the wire. The conditions under which the modified superexchange model leads to the results that follow from the Simmons model of tunneling through a rectangular barrier, or the McConnell model of superexchange tunneling, are presented. The mechanism by which the wire's terminal units with the biased energies that do or do not resonate with the Fermi-levels of the electrodes control the current, is clarified. Using an example of a molecular wire with a regular bridging alkane chain, it is shown that the model predicts current–voltage characteristics that are in good agreement with the experimental data on the attenuation of the tunneling current with an increase of the chain length.
References
- 1 D. J. Wold, C. D. Frisbie, J. Am. Chem. Soc. 2001, 123, 5549.
- 2 A. Nitzan, Ann. Rev. Phys. Chem. 2001, 52, 681.
- 3 M. Galperin, M. A. Ratner, A. Nitzan, J. Phys.: Condens. Matter 2007, 19, 103201.
- 4 R. Requist, P. P. Baruselli, A. Smogunov, M. Fabrizio, S. Modesti, E. Tosatti, Nature Nanotechnol. 2016, 11, 499.
- 5 S. V. Aradhya, L. Venkataraman, Nature Nanotechnol. 2013, 8, 399.
- 6 C. Jia, X. Guo, Chem. Soc. Rev. 2013, 42, 5642.
- 7 D. K. Aswal, S. P. Koiry, B. Jousselme, S. K. Gupta, S. Palacin, J. V. Yakhmi, Physica E 2009, 41, 325.
- 8 H. Song, H. Lee, T. Lee, Ultramicroscopy 2008, 108, 1196.
- 9 K. V. Raman, Appl. Phys. Rev. 2014, 1, 031101.
- 10 M. Ratner, Nature Nanotechnol. 2013, 8, 378.
- 11 D. Xiang, X. Wang, Ch. Jia, T. Lee, X. Guo, Chem. Rev. 2016, 116, 4318.
- 12 M. Baghbanzadeh, C. M. Bowers, D. Rappoport, T. Zaba, L. Yuan, K. Kang, K.-C. Liao, M. Gonidec, P. Rothemund, P. Cyganik, A. Aspuru-Guzik, G. M. Whitesides, J. Am. Chem. Soc. 2017, 139, 7624.
- 13 J. L. Zhang, J. Q. Zhong, J. D. Lin, W. P. Hu, K. Wu, G. Q. Xu, A. T. Wee, W. Chen, Chem. Soc. Rev. 2015, 44, 2998.
- 14 B. Cappozzi, J. Xia, O. Adak, E. J. Dell, Z. E. Lin, J. C. Taylor, J. B. Neaton, L. Campos, L. Venkataraman, Nature Nanotechnol. 2015, 10, 522.
- 15 J. Selzer, A. Salomon, D. Cahen, J. Phys. Chem. B 2002, 106, 10432.
- 16 X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, L. A. Nagahara, S. M. Lindsay, J. Phys. Chem. B 2002, 106, 8609.
- 17 X. D. Cui, X. Zarate, J. Tomfohr, O. F. Sankey, A. Primak, A. L. Moore, T. A. Moore, D. Gust, G. Harris, S. M. Lindsay, Nanotechnology 2002, 13, 5.
- 18 V. B. Engelkes, J. M. Beebe, C. D. Frisbie, J. Am. Chem. Soc. 2004, 126, 14287.
- 19 H. B. Akkerman, R. C. G. Naber, B. Jongbloed, P. A. van Hal, P. W. M. Blom, D. M. de Leeuw, B. de Boer, Proc. Natl. Acad. Sci. USA 2007, 104, 11161.
- 20 F. Chen, X. Li, J. Hihath, Z. Huang, N. Tao, J. Am. Chem. Soc. 2006, 128, 15874.
- 21 F. C. Simeone, H. J Yoon, M. M. Thuo, J. R. Barber, B. Smith, G. M. Whitesides, J. Am. Chem. Soc. 2013, 135, 18131.
- 22 E. Wierzbinski, X. Yin, K. Werling, D. H. Waldeck, J. Phys. Chem. B 2013, 117, 4431.
- 23 T. A. Su, M. Neupane, M. L. Sreigerwald, L. Venkataraman, C. Nuckolls, Nature Rev. Mat. 2016, 1, 16002.
- 24 V. Mujica, M. Kemp, A. Ratner, J. Chem. Phys. 1994, 101, 6849.
- 25 V. Mujica, M. Kemp, M. Ratner, J. Chem. Phys. 1994, 101, 6856.
- 26
S. Datta, Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge, UK
1995.
10.1017/CBO9780511805776 Google Scholar
- 27 W. Tian, S. Datta, S. Hong, R. Reifenberger, J. I. Henderson, C. P. Kubiak, J. Chem. Phys. 1998, 109, 2874.
- 28 J. G. Simmons, J. Appl. Phys. 1963, 34, 1793.
- 29 H. M. McConnell, J. Phys. Chem 1961, 35, 508.
- 30 E. H. Huisman, C. M. Guedon, B. van Wees, S. J. van der Molen, Nano Lett. 2009, 9, 3909.
- 31 I. Bâldea, H. Köppel, Phys. Status Solidi B 2012, 249, 1791.
- 32 V. N. Kharkyanen, E. G. Petrov, I. I. Ukrainskii, J. Theor. Biol. 1978, 73, 29.
- 33 E. G. Petrov, Int. J. Quant. Chem. 1979, 16, 133.
- 34 S. Larsson, J. Am. Chem. Soc. 1981, 103, 4034.
- 35 D. N. Beratan, J. N. Onuchic, J. J. Hopfield, J. Chem. Phys. 1987, 86, 4488.
- 36 M. D. Newton, Chem. Rev. 1991, 91, 767.
- 37 A. A. Voityuk, J. Phys. Chem. C 2013, 117, 2670.
- 38 J. Jortner, M. Bixon, A. A. Voityuk, N. Rösch, J. Phys. Chem. A 2002, 106, 7599.
- 39 M. Bixon, J. Jortner, Chem. Phys. 2002, 281, 393.
- 40 C. R. Treadway, M. G. Hill, J. K. Barton, Chem. Phys. 2002, 281, 409.
- 41 M. A. Rampi, G. M. Whitesides, Chem. Phys. 2002, 281, 373.
- 42 E. G. Petrov, Y. R. Zelinskyy, V. May, P. Hänggi, J. Chem. Phys. 2007, 127, 084709.
- 43 S. Larsson, J. Chem. Soc. Faraday Trans. 2: Mol. Chem. Phys. 1983, 79, 1375.
- 44 A. S. Davydov, Biology and Quantum Mechanics. Pergamon Press, Oxford 1982.
- 45 A. S. Davydov, Yu. B. Gaididey, Phy. Status Solidi B 1985, 132, 189.
- 46
A. A. de S. da Gama,
Theor. Chim. Acta
1985, 68, 159.
10.1007/BF00527532 Google Scholar
- 47 C. Joachim, Chem. Phys. 1987, 116, 339.
- 48 D. N. Beratan, J. N. Betts, J. N. Onuchic, Science 1991, 252, 1285.
- 49 J. N. Onuchic, P. C. P. de Andrade, D. N. Beratan, J. Chem. Phys. 1991, 95, 1131.
- 50 S. Priyadarshy, S. S. Skourtis, S. M. Risser, D. N. Beratan, J. Chem. Phys. 1996, 104, 9473.
- 51 J. W. Evenson, M. Karplus, J. Chem. Phys. 1992, 96, 5272.
- 52 S. S. Skourtis, S. Mukamel, Chem. Phys. 1995, 197, 367.
- 53 E. G. Petrov, V. May, P. Hänggi, Phys. Rev. B 2005, 73, 045408.
- 54 V. Mujica, M. Kemp, A. Roitberg, M. Ratner, J. Chem. Phys. 1996, 104, 7296.
- 55 E. G. Emberly, G. Kirczenow, Phys. Rev. B 1998, 58, 10911.
- 56 A. Onipko, Y. Klimenko, L. Malysheva, S. Safström, Solid State Commun. 1998, 108, 555.
- 57 S. N. Yaliraki, M. Kemp, M. Ratner, J. Am. Chem. Soc. 1999, 121, 3428.
- 58 E. G. Petrov, I. S. Tolokh, A. A. Demidenko, V. V. Gorbach, Chem. Phys. 1995, 193, 237.
- 59 E. G. Petrov, JETP Lett. 2018, 108, 322.
- 60 I. Bâldea, H. Köppel, Phys. Lett. A 2012, 376, 1472.
- 61 I. Bâldea, Phys. Chem. Chem. Phys. 2015, 17, 31260.
- 62 A. R. Garrigues, L. Yuan, L. Wang, E. R. Mucciolo, D. Thompon, E. del Barco, C. A. Nijhus, Sci. Rep. 2016, 6, 26517.
- 63 Z. Xie, I. Bâldea, S. Oram, C. E. Smith, C. D. Frisbie, ACS Nano 2017, 11, 569.
- 64 Z. Xie, I. Bâldea, C. D. Frisbie, J. Am. Chem. Sci. 2019, 141, 3670.
- 65 Z. Xie, I. Bâldea, C. D. Frisbie, Chem. Sci. 2018, 9, 4456.
- 66 I. Bâldea, Phys. Chem. Chem. Phys. 2017, 19, 11759.
- 67 C. Caroli, R. Combescot, P. Nozieres, D. Saint-James, J. Phys. C: Solid State Phys. 1971, 4, 916.
- 68
Y. Tanaka,
K. Yonemitsu,
J. Phys. Soc. Jpn.
2014, 83, 124704.
10.7566/JPSJ.83.124704 Google Scholar
- 69 I. Bâldea, Beilstein J. Nanotechnol. 2016, 7, 418.
- 70 J. C. Cuevas, E. Scheer, In Nanoscience and Nanotechnology (Vol. 15, 2nd edition). World Scientific, Singapore 2017.
- 71 V. I. Arkhipov, U. Wolf, H. Bassler, Phys. Rev. B 1999, 59, 7514.
- 72 A. L. Burin, M. A. Ratner, J. Chem. Phys. 2000, 113, 3941.
- 73 E. G. Petrov, V. May, P. Hänggi, Chem. Phys. 2002, 281, 211.
- 74 V. Mujica, A. E. Roitberg, M. Ratner, J. Chem. Phys. 2000, 112, 6834.
- 75 E. G. Petrov, Low Temp. Phys. 2005, 31, 338.
- 76 A. Troisi, M. A. Ratner, Small 2006, 2, 172.
- 77 V. Mujica, M. A. Ratner, A. Nitzan, Chem. Phys. 2002, 281, 147.
- 78 The expression (7) is defined as the electron tunneling current. This suggests that, with a positive polarity, the electrons tunnel from the grounded electrode to the opposite electrode (holes in the reverse direction).
- 79 E. G. Petrov, Chem. Phys. 2006, 326, 151.
- 80 D. M. Newns, Phys. Rev. 1969, 178, 1123.
- 81 The same exact result occurs if one uses the G1N(E) written in the form (95).
- 82 L.-Y. Hsu, H. Rabitz, J. Chem. Phys. 2016, 146, 234702.
- 83 J. K. Tomfohr, O. F. Sankey, Phys. Rev. B 2002, 65, 245105.
- 84
S. Adachi, GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties. World Scientific, Singapore
1994.
10.1142/2508 Google Scholar
- 85 R. Kundu, Mod. Phys. Lett. 2011, 25, 163.
- 86 S. H. Choi, B. Kim, C. D. Frisbie, Science 2008, 320, 1482.
- 87 V. Kaliginedi, P. Moreno-Garcia, H. Valkenier, W. Hong, V. M. Garcia-Suarez, P. Buiter, J. L. H. Otten, J. C. Hummelen, C. J. Lambert, T. Wandlowski, J. Am. Chem. Soc. 2012, 134, 5262.
- 88 N. Renaud, Y. A. Berlin, F. D. Lewis, M. A. Ratner, J. Am. Chem. Soc. 2013, 135, 3953.
- 89 Y. Zhang, S. Ray, E.-D. Fung, A. Borges, M. H. Gartner, M. L. Steigerwald, G. Solomon, S. Patil, L. Venkataraman, J. Am. Chem. Soc. 2018, 140, 13167.
- 90 N. A. Zimbovskaya, J. Chem. Phys. 2017, 146, 184302.