Structure and Electrical Conductivity of Irradiated BaTiO3 Nanoparticles
Basheer Shameer Ahmed
Centre for Materials Science Vijnana Bhavana, Mysuru 570006, Karnataka, India
Search for more papers by this authorMysuru Basavaraju Nandaprakash
Centre for Materials Science Vijnana Bhavana, Mysuru 570006, Karnataka, India
Search for more papers by this authorKeerthiraj Namratha
Centre for Materials Science Vijnana Bhavana, Mysuru 570006, Karnataka, India
Search for more papers by this authorKullaiah Byrappa
Centre for Materials Science Vijnana Bhavana, Mysuru 570006, Karnataka, India
Search for more papers by this authorCorresponding Author
Rudrappa Somashekar
Centre for Materials Science Vijnana Bhavana, Mysuru 570006, Karnataka, India
Search for more papers by this authorBasheer Shameer Ahmed
Centre for Materials Science Vijnana Bhavana, Mysuru 570006, Karnataka, India
Search for more papers by this authorMysuru Basavaraju Nandaprakash
Centre for Materials Science Vijnana Bhavana, Mysuru 570006, Karnataka, India
Search for more papers by this authorKeerthiraj Namratha
Centre for Materials Science Vijnana Bhavana, Mysuru 570006, Karnataka, India
Search for more papers by this authorKullaiah Byrappa
Centre for Materials Science Vijnana Bhavana, Mysuru 570006, Karnataka, India
Search for more papers by this authorCorresponding Author
Rudrappa Somashekar
Centre for Materials Science Vijnana Bhavana, Mysuru 570006, Karnataka, India
Search for more papers by this authorAbstract
The effects of gamma irradiation on hydrothermally synthesized BaTiO3 nanoparticles have been investigated. Gamma irradiation is carried out at room temperature from 0, 50, 100, 150, 200 kGy to maximum dosage up to 250 kGy with 60Co source. Prepared BaTiO3 nanoparticles are investigated using line profile analysis employing X-ray diffraction (XRD) data; the structure, size, dielectric and conductivity properties of the BaTiO3 are studied using Raman spectroscopy, transmission electron microscopy (TEM), and impedance analyzer. The post-irradiation volume of the BaTiO3 unit cell increases with dosage and most of the cells possess a modified tetragonal structure. The Grüneisen constant is high for 242 cm−1 optical modes with 150 kGy and lowest for 516 cm−1 optical mode for 50 kGy irradiation. The morphology changes and particle size decreases as the radiation dose is increased. Conductivity (σ) increases with the increase in radiation dose, especially at 50 kGy. Cole–Cole plot is suggestive of the depolarization nature of irradiated BaTiO3 nanoparticles.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1 D. H. Yoon, B. I. Lee, J. Ceram. Proc. Res. 2002, 3, 41.
- 2 B. Cui, P. Yu, J. Tian, H. Guo, Z. Chang, Mater. Sci. Eng. A 2007, 454-455, 667.
- 3 B. Cui, P. Yu, J. Tian, Z. Chang, Mater. Sci. Eng. B 2006, 133, 205.
- 4 A. Von Hippel, Rev. Mod. Phys. 1950, 22, 221.
- 5 T. Hoshina, H. Yasuno, S. M. Nam, H. Kakemoto, T. Tsurumi, S. Wada, Trans. Mater. Res. Soc. Jpn. 2004, 29, 1207.
- 6 S. Wada, H. Yasuno, T. Hoshina, S. M. Nam, H. Kakemoto, T. Tsurumi, Jpn. J. Appl. Phys. 2003, 42, 6188.
- 7 T. Ould-Ely, M. Luger, L. Kaplan-Reinig, K. Niesz, M. Doherty, D. E. Morse, Nat. Protoc. 2011, 6, 97.
- 8 E. Lester, M. Poliakoff, J. Li, B. Guy, N. Tinsley, P. Blood, Technical Proceedings of the 2007 Nanotechnology Conference and Trade Show, Nanotech 2007 Volume 4 (NSTI Nanotech: Technical Proceedings), CRC Press, Boca Raton, CA 2007, pp. 316–319.
- 9 Y. Hu, J.-F. Chen, J. Cluster. Sci. 2007, 18, 371.
- 10 G. F. Strouse, J. A. Gerbec, M. Donny (The Regents of the University of California), US 7575699 B2, 2009; US7927516 B2, 2011.
- 11 Y. T. Didenko, K. S. Suslick, J. Am. Chem. Soc. 2005, 127, 12196.
- 12 J. Y. Lee, S. H. Hong, J. H. Lee, Y. K. Lee, J. Y. Choi, J. Am. Ceram. Soc. 2005, 88, 303.
- 13 Z. C. Michael Hu, V. Kurian, E. A. Payzant, C. J. Rawn, R. D. Hunt, Powder Technol. 2000, 110, 2.
- 14 H.-J. Chen, Y.-W. Chen, Ind. Eng. Chem. Res. 2003, 42, 473.
- 15 P. Pinceloup, C. Courtois, A. Leriche, B. Thierry, J. Am. Ceram. Soc. 1999, 82, 3049.
- 16 T. J. Yosenick, D. V. Miller, R. Kumar, J. A. Nelson, J. Mater. Res. 2005, 20, 837.
- 17 U. A. Joshi, S. Yoon, S. Baik, J. S. Lee, J. Phys. Chem. B 2006, 110, 12249.
- 18 J. Gao, H. Shi, J. Yang, T. Li, R. Zhang, D. Chen, Nanoscale Res. Lett. 2015, 10, 329.
- 19 T. M. Shaw, S. Trolier-McKinstry, P. C. McIntyre, Annu. Rev. Mater. Sci. 2000, 30, 263.
- 20 W. R. Buessem, L. E. Cross, A. K. Goswami, J. Am. Ceram. Soc. 1966, 49, 36.
- 21 K. Kinoshita, A. Yamaji, J. Appl. Phys. 1976, 47, 371.
- 22 G. Arlt, D. Hennings, G. Dewith, J. Appl. Phys. 1985, 58, 1619.
- 23 A. E. Jacobs, Phys. Rev. B 1995, 52, 6327.
- 24 B. Shameer, Ahmed, K. Namratha, M. B. Nandaprakash, R. Somashekar, K. Byrappa, Radiat. Eff. Defects Solids 2017, 172, 257.
- 25 R. Asiaie, W. Zhu, S. A. Akbar, P. K. Dutta, Chem. Mater. 1996, 8, 226.
- 26 M. L. Moreira, G. P. Mambrini, D. P. Volanti, E. R. Leite, M. O. Orlandi, P. S. Pizani, V. R. Mastelaro, C. O. Paiva-Santos, E. Longo, J. A. Varela, Chem. Mater. 2008, 20, 5381.
- 27 Y. Gao, V. V. Shvartsman, A. Elsukova, D. C. Lupascu, J. Mater. Chem. 2012, 22, 17573.
- 28
M. Niederberger,
N. Pinna,
J. Polleux,
M. Antonietti,
Angew. Chem.
2004,
116, 2320.
10.1002/ange.200353300 Google Scholar
- 29 S. P. S. Porto, P. A. Fleury, T. C. Damen, Phys. Rev. 1967, 154, 522.
- 30 F. Maxim, P. Ferreira, P. M. Vilarinho, I. Reaney, Cryst. Growth Des. 2008, 8, 3309.
- 31 K. S. Krishnamurthy, Mol. Cryst. Liq. Cryst. 1986, 132, 255.
- 32 B. P. Rao, K. H. Rao, P. S. V. Subba Rao, A. Mahesh Kumar, L. N. Murthy, K. Asokan, V. V. Siva Kumar, R. Kumar, N. S. Gajbhiye, O. F. Caltun, Nucl. Instrum. Methods Phys. Res. B, Beam Interact. Mater. Atoms 2006, 244, 27.
- 33
M. B. Nanda Prakash,
A. Manjunath,
R. Somashekar,
Adv. Condens. Matter Phys.
2013,
2013, 690629.
10.1155/2013/690629 Google Scholar
- 34 Y. J. Kim, M. H. Park, Y. H. Lee, H. J. Kim, W. Jeon, T. Moon, K. Do Kim, D. S. Jeong, H. Yamada, C. S. Hwang, Sci. Rep. 2016, 6, 19039.
- 35
J. R. Goncalves,
J. Barbosa,
P. Sa,
J. A. Mendes,
A. G. Rolo,
B. G. Almeida,
Phys. Status Solidi C
2010,
7, 2720.
10.1002/pssc.200983833 Google Scholar
- 36 R. N. Bhowmik, Ceram. Int. 2012, 38, 5069.
- 37 Y.-C. Wang, C.-C. Ko, K.-W. Chang, Phys. Status Solidi B 2015, 252, 1640.
- 38 L. Dong, D. S. Stone, R. S. Lakes, Phys. Status Solidi B 2011, 248, 158.
- 39
C. A. S. Lima,
A. Scalabrin,
L. C. M. Miranda,
H. Vargas,
S. P. S. Porto,
Phys. Status Solidi B
1978,
86, 373.
10.1002/pssb.2220860144 Google Scholar
- 40 J. F. Lomax, J. J. Fontanella, C. A. Edmondson, M. C. Wintersgill, M. A. Westgate, S. Eker, J. Phys. Chem. C 2012, 116, 23742.