Bottom-up assembly of nano-carbon devices by dielectrophoresis
Corresponding Author
Aravind Vijayaraghavan
School of Materials, The University of Manchester, Manchester, M13 9PL UK
Corresponding author: e-mail [email protected], Phone: +44 161275 0136, Fax: +44 161275 4527Search for more papers by this authorCorresponding Author
Aravind Vijayaraghavan
School of Materials, The University of Manchester, Manchester, M13 9PL UK
Corresponding author: e-mail [email protected], Phone: +44 161275 0136, Fax: +44 161275 4527Search for more papers by this authorAbstract
In this review, I trace the development of dielectrophoresis (DEP) for the directed assembly of carbon nanotubes (CNTs) and graphene. DEP involves driving a nanoparticle in an alternating current (AC) electric field, whereby the particles migrate towards or away from the direction of high-field gradient depending on the relative polarizability of the particle and medium. DEP offers a scalable and controllable route for integration of various kinds of nano-carbon devices, such as field-effect transistors, nano-electromechanical resonators and sensors. DEP utilizes nano-carbons in solution phase and is compatible with the various CNT and graphene sorting methods which have been developed, allowing for instance the large-scale integration of single-chirality CNTs.
False-colour scanning electron micrograph of an array of semiconducting single-wall carbon nanotube devices assembled by alternating-current dielectrophoresis.
References
- 1
S. Nanot,
N. Thompson,
J.-H. Kim,
X. Wang,
W. Rice,
E. Hároz,
Y. Ganesan,
C. Pint, and
J. Kono, in:
Springer Handbook of Nanomaterials SE-4, edited by R. Vajtai (Springer,
Berlin, Heidelberg,
2013), pp. 105–146.
10.1007/978-3-642-20595-8_4 Google Scholar
- 2
A. Vijayaraghavan, in:
Springer Handbook of Nanomaterials SE-2, edited by R. Vajtai (Springer,
Berlin, Heidelberg,
2013), pp. 39–82.
10.1007/978-3-642-20595-8_2 Google Scholar
- 3 P. McEuen, Phys. World 13, 31–36 (2000).
- 4 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666–669 (2004).
- 5 E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. L. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. C. Neto, Phys. Rev. Lett. 99, 216802 (2007).
- 6 M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).
- 7 L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Science 335, 947–50 (2012).
- 8 L. Jiao, X. Wang, G. Diankov, H. Wang, and H. Dai, Nature Nanotechnol. 5, 321–325 (2010).
- 9 X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229–1232 (2008).
- 10 H. A. Pohl, Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields (Cambridge University Press, Cambridge, 1978).
- 11 M. C. Hersam, Nature Nanotechnol. 3, 387–394 (2008).
- 12 T. B. Jones, Electromechanics of Particles (Cambridge University Press, Cambridge, 2005).
- 13 M. Pérez-Rodríguez, L. M. Varela, M. García, V. Mosquera, and F. Sarmiento, J. Chem. Eng. Data 44, 944–947 (1999).
- 14 L. X. Benedict, S. G. Louie, M. L. Cohen, X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev. B 52, 8541 (1995).
- 15 R. Krupke, F. Hennrich, M. M. Kappes, and H. v. Löhneysen, Nano Lett. 4, 1395–1399 (2004).
- 16 R. Krupke, F. Hennrich, H. v. Löhneysen, and M. M. Kappes, Science 301, 344–347 (2003).
- 17 S. Blatt, F. Hennrich, H. v. Löhneysen, M. M. Kappes, A. Vijayaraghavan, and R. Krupke, Nano Lett. 7, 1960–1966 (2007).
- 18 C. W. Marquardt, S. Blatt, F. Hennrich, H. v. Löhneysen, and R. Krupke, Appl. Phys. Lett. 89, 183117 (2006).
- 19 R. Krupke, F. Hennrich, H. B. Weber, D. Beckmann, O. Hampe, S. Malik, M. M. Kappes, and H. v. Löhneysen, Appl. Phys. A 76, 397–400 (2003).
- 20 D. Mann, A. Javey, J. Kong, Q. Wang, and H. J. Dai, Nano Lett. 3, 1541–1544 (2003).
- 21 R. Krupke, F. Hennrich, H. B. Weber, M. M. Kappes, and H. v. Löhneysen, Nano Lett. 3, 1019–1023 (2003).
- 22 M. Oron-Carl and R. Krupke, Phys. Rev. Lett. 100, 127401 (2008).
- 23 A. Vijayaraghavan, S. Blatt, D. Weissenberger, M. Oron-Carl, F. Hennrich, D. Gerthsen, H. Hahn, and R. Krupke, Nano Lett. 7, 1556–1560 (2007).
- 24 S. Banerjee, B. White, L. Huang, B. J. Rego, S. O'Brien, and I. P. Herman, Appl. Phys. A 86, 415–419 (2006).
- 25 A. Oikonomou, T. Susi, E. I. Kauppinen, and A. Vijayaraghavan, Phys. Status Solidi B 249, 2416–2419 (2012).
- 26 J. Li, Q. Zhang, D. Yang, and J. Tian, Carbon 42, 2263–2267 (2004).
- 27 X. Huang, R. S. Mclean, and M. Zheng, Anal. Chem. 77, 6225–6228 (2005).
- 28 H. Liu, D. Nishide, T. Tanaka, and H. Kataura, Nature Commun. 2, 309 (2011).
- 29 F. Hennrich, S. Lebedkin, and M. M. Kappes, Phys. Status Solidi B 245, 1951–1953 (2008).
- 30 A. Vijayaraghavan, F. Hennrich, and N. Stürzl, ACS Nano 4, 2748–2754 (2010).
- 31 B. S. Flavel, M. M. Kappes, R. Krupke, and F. Hennrich, ACS Nano 7, 3557–3564 (2013).
- 32 M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, Nature Nanotechnol. 1, 60–65 (2006).
- 33 M. Engel, J. P. Small, M. Steiner, M. Freitag, A. A. Green, M. C. Hersam, and P. Avouris, ACS Nano 2, 2445–2452 (2008).
- 34 M. Ganzhorn, A. Vijayaraghavan, A. A. Green, S. Dehm, A. Voigt, M. Rapp, M. C. Hersam, and R. Krupke, Adv. Mater. 23, 1734–1738 (2011).
- 35 J. Liu, M. J. Casavant, M. Cox, D. A. Walters, P. Boul, W. Lu, A. J. Rimberg, K. A. Smith, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett. 303, 125–129 (1999).
- 36 T. Schwamb, T.-Y. Choi, N. Schirmer, N. R. Bieri, B. Burg, J. Tharian, U. Sennhauser, and D. Poulikakos, Nano Lett. 7, 3633–3638 (2007).
- 37 H. Pathangi, G. Groeseneken, and A. Witvrouw, Microelectron. Eng. 98, 218–221 (2012).
- 38 S. Schuerle, M. K. Tiwari, K. Shou, D. Poulikakos, and B. J. Nelson, Microelectron. Eng. 88, 2740–2743 (2011).
- 39 P. Makaram, S. Selvarasah, X. Xiong, C.-L. Chen, A. Busnaina, N. Khanduja, and M. R. Dokmeci, Nanotechnology 18, 395204 (2007).
- 40 E. Gultepe, D. Nagesha, B. D. F. Casse, S. Selvarasah, A. Busnaina, and S. Sridhar, Nanotechnology 19, 455309 (2008).
- 41 Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, Nature Nanotechnol. 3, 563–568 (2008).
- 42 M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, J. Am. Chem. Soc. 131, 3611–3620 (2009).
- 43 A. A. Green and M. C. Hersam, Nano Lett. 9, 4031–4036 (2009).
- 44 S. Hong, S. Jung, S. Kang, Y. Kim, X. Chen, S. Stankovich, S. R. Ruoff, and S. Baik, J. Nanosci. Nanotechnol. 8, 424–427 (2008).
- 45 X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berger, and W. A. W. de Heer, Phys. Rev. Lett. 101, 26801 (2008).
- 46 R. Lanche, L. E. Delle, M. Weil, X. T. Vu, V. Pachauri, W. M. Munief, P. Wagner, and S. Ingebrandt, Phys. Status Solidi A 210, 968–974 (2013).
- 47 A. Vijayaraghavan, C. Sciascia, S. Dehm, A. Lombardo, A. Bonetti, A. C. Ferrari, and R. Krupke, ACS Nano 3, 1729–1734 (2009).
- 48 D. Joung, A. Chunder, L. Zhai, and S. I. Khondaker, Nanotechnology 21, 165202 (2010).
- 49 S. Malik, A. Vijayaraghavan, R. Erni, K. Ariga, I. Khalakhan, and J. P. Hill, Nanoscale 2, 2139–2143 (2010).
- 50 K. S. Vasu, B. Chakraborty, S. Sampath, and A. K. Sood, Solid State Commun. 150, 1295–1298 (2010).
- 51 P. Li, S. Member, N. Lei, J. Xu, and W. Xue, IEEE Trans. Nanotechnol. 11, 751–759 (2012).
- 52 H. S. Yoon, W. K. Kim, Y. M. Jung, J. H. Cho, D. H. Kim, I. S. Song, J. H. Choi, S. Baik, and S. C. Jun, Nanotechnology 24, 015201 (2013).
- 53 F. P. Rouxinol, R. V. Gelamo, R. G. Amici, A. R. Vaz, and Sa. Moshkalev, Appl. Phys. Lett. 97, 253104 (2010).
- 54 M. Steiner, M. Engel, Y.-M. Lin, Y. Wu, K. Jenkins, D. B. Farmer, J. J. Humes, N. L. Yoder, J.-W. T. Seo, A. A. Green, M. C. Hersam, R. Krupke, and P. Avouris, Appl. Phys. Lett. 101, 053123 (2012).
- 55 J. Suehiro, G. Zhou, and M. Hara, J. Phys. D 36, L109. (2003).
- 56 J. Suehiro, S.-I. Hidaka, S. Yamane, and K. Imasaka, Sens. Actuators B 127, 505–511 (2007).
- 57 M. Ganzhorn, A. Vijayaraghavan, S. Dehm, F. Hennrich, A. A. Green, M. Fichtner, A. Voigt, M. Rapp, H. v. Löhneysen, M. C. Hersam, M. M. Kappes, and R. Krupke, ACS Nano 5, 1670–1676 (2011).
- 58 J. Wang, B. Singh, S. Maeng, H.-I. Joh, and G.-H. Kim, Appl. Phys. Lett. 103, 083112 (2013).
- 59 P. Li, S. Member, N. Lei, J. Xu, and W. Xue, IEEE Nano 1327–1330 (2011).
- 60 S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, C. Sciascia, F. Bonaccorso, K.-P. Bohnen, H. V. Löhneysen, M. M. Kappes, P. M. Ajayan, M. C. Hersam, A. C. Ferrari, and R. Krupke, Nano Lett. 10, 1589–1594 (2010).
- 61 S. Khasminskaya, F. Pyatkov, B. S. Flavel, W. H. P. Pernice, and R. Krupke, arXiv:1306.5632 [cond-mat.mes-hall] (2013).
- 62 C. W. Marquardt, S. Dehm, A. Vijayaraghavan, S. Blatt, F. Hennrich, and R. Krupke, Nano Lett. 8, 2767–2772 (2008).
- 63 C. Thiele, M. Engel, F. Hennrich, M. M. Kappes, K.-P. Johnsen, C. G. Frase, H. v. Löhneysen, and R. Krupke, Appl. Phys. Lett. 99, 173105 (2011).
- 64 C. W. Marquardt, S. Grunder, A. Blaszczyk, S. Dehm, F. Hennrich, H. v. Löhneysen, M. Mayor, and R. Krupke, Nature Nano 5, 863–867 (2010).
- 65 J. Zhang, J. Tang, G. Yang, Q. Qiu, L.-C. Qin, and O. Zhou, Adv. Mater. 16, 1219–1222 (2004).
- 66 J. Tang, G. Yang, Q. Zhang, A. Parhat, B. Maynor, J. Liu, L.-C. Qin, and O. Zhou, Nano Lett. 5, 11–14 (2005).