Tuning the adsorption of perylene-based surfactants on the surface of single-walled carbon nanotubes
Corresponding Author
Claudia Backes
Department of Chemistry and Pharmacy, Institute of Advanced Materials and Processes (ZMP), University of Erlangen-Nuremberg, Henkestraße 42, 91054 Erlangen, Germany
School of Physics, Trinity College Dublin, Dublin, 2 Ireland
Corresponding author: e-mail [email protected], Phone: +353 1 896 3165, Fax: +353 1 671 1759Search for more papers by this authorFrank Hauke
Department of Chemistry and Pharmacy, Institute of Advanced Materials and Processes (ZMP), University of Erlangen-Nuremberg, Henkestraße 42, 91054 Erlangen, Germany
Search for more papers by this authorAndreas Hirsch
Department of Chemistry and Pharmacy, Institute of Advanced Materials and Processes (ZMP), University of Erlangen-Nuremberg, Henkestraße 42, 91054 Erlangen, Germany
Search for more papers by this authorCorresponding Author
Claudia Backes
Department of Chemistry and Pharmacy, Institute of Advanced Materials and Processes (ZMP), University of Erlangen-Nuremberg, Henkestraße 42, 91054 Erlangen, Germany
School of Physics, Trinity College Dublin, Dublin, 2 Ireland
Corresponding author: e-mail [email protected], Phone: +353 1 896 3165, Fax: +353 1 671 1759Search for more papers by this authorFrank Hauke
Department of Chemistry and Pharmacy, Institute of Advanced Materials and Processes (ZMP), University of Erlangen-Nuremberg, Henkestraße 42, 91054 Erlangen, Germany
Search for more papers by this authorAndreas Hirsch
Department of Chemistry and Pharmacy, Institute of Advanced Materials and Processes (ZMP), University of Erlangen-Nuremberg, Henkestraße 42, 91054 Erlangen, Germany
Search for more papers by this authorAbstract
Despite tremendous progress in dispersion and sorting of carbon nanotubes using surfactant systems in water, the effect of the surrounding aqueous medium is only poorly understood. Herein we present a study on the effect of pH and ionic strength on the adsorption behavior of surfactants on the SWCNT scaffold and the related differences in dispersion and individualization. We have turned to an anionic perylene bisimide dye as model surfactant, as the rich spectroscopy allows us to trace the interaction with and the packing densities on the SWCNTs. We show that higher ionic strength and high packing density is beneficial for the dispersion yield, while high net charge density on the surface is the crucial factor for exfoliation. The accessible tuning of the packing densities furthermore enabled the investigation of preferential interaction of the dye with certain nanotube species.
Environmental effects: crucial factors for nanomaterial dispersion and exfoliation as demonstrated with the aid of a nanotube-perylene bisimide model system.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
pssb201300109-sm-0001-SuppData-S1.pdf4.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 S. Iijima, Nature 354, 56–58 (1991).
- 2 M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, Nature Nanotechnol. 1, 60–65 (2006).
- 3 H. Liu, D. Nishide, and T. Tanaka, Nature Commun. 2, 309 (2011).
- 4 T. Tanaka, H. Liu, S. Fujii, and H. Kataura, Phys. Status Solidi RRL 5, 301–306 (2011).
- 5 T. Tanaka, Y. Urabe, D. Nishide, and H. Kataura, J. Am. Chem. Soc. 133, 17610–17613 (2011).
- 6 D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, Chem. Soc. Rev. 42, 2824–2860 (2013).
- 7 G. S. Duesberg, M. Burghard, J. Muster, G. Philipp, and S. Roth, Chem. Commun. 3, 435–436 (1998).
- 8 G. S. Duesberg, J. Muster, V. Krstic, M. Burghard, and S. Roth, Appl. Phys. A 67, 117–119 (1998).
- 9 F. Lemasson, N. Berton, J. Tittmann, F. Hennrich, M. M. Kappes, and M. Mayor, Macromolecules 45, 713–722 (2012).
- 10 F. Chen, B. Wang, Y. Chen, and L.-J. Li, Nano Lett. 7, 3013–3017 (2007).
- 11 A. Nish, J.-Y. Hwang, J. Doig, and R. J. Nicholas, Nature Nanotechnol. 2, 640–646 (2007).
- 12 F. Hennrich, S. Lebedkin, and M. M. Kappes, Phys. Status Solidi B 245, 1951–1953 (2008).
- 13 J.-Y. Hwang, A. Nish, J. Doig, S. Douven, C.-W. Chen, L.-C. Chen, and R. J. Nicholas, J. Am. Chem. Soc. 130, 3543–3553 (2008).
- 14 S.-Y. Ju, J. Doll, I. Sharma, and F. Papadimitrakopoulos, Nature Nanotechnol. 3, 356–362 (2008).
- 15 H. Li, B. Zhou, Y. Lin, L. Gu, W. Wang, K. A. S. Fernando, S. Kumar, L. F. Allard, and Y.-P. Sun, J. Am. Chem. Soc. 126, 1014–1015 (2004).
- 16 R. M. Tromp, A. Afzali, M. Freitag, D. B. Mitzi, and Z. Chen, Nano Lett. 8, 469–472 (2008).
- 17 R. Marquis, K. Kulikiewicz, S. Lebedkin, M. M. Kappes, C. Mioskowski, S. Meunier, and A. Wagner, Chem. Eur. J. 15, 11187–11196 (2009).
- 18 J. Zhou, H. Li, J. Lu, G. Luo, L. Lai, R. Qin, L. Wang, S. Nagase, Z. Gao, W. Mei, G. Li, D. Yu, and S. Sanvito, Nano Res. 3, 296–306 (2010).
- 19 C. Backes, C. D. Schmidt, F. Hauke, and A. Hirsch, Chem. Asian J. 6, 438–444 (2011).
- 20 J. N. Coleman, Adv. Funct. Mater. 19, 3680–3695 (2009).
- 21 F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, Mater. Today 15, 564–589 (2012).
- 22 Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nature Nanotechnol. 7, 699–712 (2012).
- 23 C. Backes, C. D. Schmidt, F. Hauke, C. Boettcher, and A. Hirsch, J. Am. Chem. Soc. 131, 2172–2184 (2009).
- 24 C. Ehli, C. Oelsner, D. M. Guldi, A. Mateo-Alonso, M. Prato, C. Schmidt, C. Backes, F. Hauke, and A. Hirsch, Nature Chem. 1, 243–249 (2009).
- 25 C. Backes, E. Karabudak, C. D. Schmidt, F. Hauke, A. Hirsch, and W. Wohlleben, Chem. Eur. J. 16, 13176–13184 (2010).
- 26 C. Backes, C. D. Schmidt, J. N. Coleman, W. Wohlleben, F. Hauke, and A. Hirsch, Chem. Eur. J. 16, 13185–13192 (2010).
- 27 C. Backes, C. D. Schmidt, K. Rosenlehner, J. N. Coleman, F. Hauke, and A. Hirsch, Adv. Mater. 22, 788–802 (2010).
- 28 C. Backes, T. Schunk, F. Hauke, and A. Hirsch, J. Mater. Chem. 21, 3554–3557 (2011).
- 29See online Supporting Information for details.
- 30 C.-C. You, P. Espindola, C. Hippius, J. Heinze, and F. Würthner, Adv. Funct. Mater. 17, 3764–3772 (2007).
- 31 C. D. Schmidt, C. Bottcher, and A. Hirsch, Eur. J. Org. Chem. 5497–5505 (2007).
- 32 C. Backes, F. Hauke, and A. Hirsch, Adv. Mater. 23, 2588–2601 (2011).
- 33 C. Backes, J. Englert, N. Bernhard, F. Hauke, and A. Hirsch, Small 6, 1968–1973 (2010).
- 34 S. Niyogi, S. Boukhalfa, S. B. Chikkannanavar, T. J. McDonald, M. J. Heben, and S. K. Doorn, J. Am. Chem. Soc. 129, 1898–1899 (2007).
- 35 N. Nakashima, Y. Tomonari, and H. Murakami, Chem. Lett. 638–639 (2002).
- 36 Y. Tomonari, H. Murakami, and N. Nakashima, Chem. Eur. J. 12, 4027–4034 (2006).
- 37 C. Backes, U. Mundloch, A. Ebel, F. Hauke, and A. Hirsch, Chem. Eur. J. 16, 3314–3317 (2010).
- 38 F. Ernst, T. Heek, A. Setaro, R. Haag, and S. Reich, Adv. Funct. Mater. 22, 3921–3926 (2012).
- 39 F. Ernst, T. Heek, R. Haag, S. Reich, and A. Setaro, Phys. Status Solidi B 249, 2465–2468 (2012).