Hyperdoped Crystalline Silicon for Infrared Photodetectors by Pulsed Laser Melting: A Review
Jiawei Fu
State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorDeren Yang
State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Xuegong Yu
State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorJiawei Fu
State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorDeren Yang
State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Xuegong Yu
State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorAbstract
Infrared photodetectors based on crystalline silicon have attracted much attention due to their low cost and good compatibility with complementary metal–oxide–semiconductor (CMOS) technology in ultra-largescale integrated circuits (ULSI). However, silicon shows no response to infrared light with a wavelength of over 1100 nm corresponding to its bandgap of 1.12 eV. Pulsed laser melting and rapid solidification are effective ways to hyperdope high concentrations of deep-level impurities into silicon, and therefore form an impurity band within the bandgap, allowing broad-band infrared light to be absorbed. Herein, a review of the fundamentals and research progress of hyperdoped silicon and related infrared photodetectors during the past few decades is given. The fundamentals of hyperdoped silicon, including the hyperdoping mechanism and infrared light absorption or response, are first discussed. Then, the fabrication methodologies and properties of hyperdoped silicon with various elementals (chalcogens and transition metals) are illustrated, among which the corresponding photodetectors’ properties are stressed. Earlier research on chalcogen hyperdoping paves the path for silicon to be used for infrared photodetectors and later research on transition metals hyperdoping provides a new opportunity for further improvements of device properties. Finally, a summary and future research direction of hyperdoped silicon are outlined.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna S. K. Noh, Nat. Commun. 2011, 2, 286.
- 2R. Soref, IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1678.
- 3R. Dong, C. Bi, Q. Dong, F. Guo, Y. Yuan, Y. Fang, Z. Xiao, J. Huang, Adv. Opt. Mater. 2014, 2, 549.
- 4P. V. K. Yadav, B. Ajitha, Y. A. Kumar Reddy, A. Sreedhar, Chemosphere 2021, 279, 130473.
- 5W. E. Tennant, D. J. Gulbransen, A. Roll, M. Carmody, D. Edwall, A. Julius, P. Dreiske, A. Chen, W. McLevige, S. Freeman, D. Lee, D. E. Cooper, E. Piquette, J. Electron. Mater. 2014, 43, 3041-.
- 6Z. Li, J. Allen, M. Allen, H. H. Tan, C. Jagadish, L. Fu, Materials 2020, 13, 1400.
- 7E. Burstein, J. J. Oberly, J. W. Davisson, Phys. Rev. 1953, 89, 331.
- 8N. Sclar, Prog. Quantum Electron. 1984, 9, 149.
- 9H. Chen, X. Luo, A. W. Poon, Appl. Phys. Lett. 2009, 95, 171111.
- 10T. Baehr-Jones, M. Hochberg, A. Scherer, Opt. Express 2008, 16, 1659.
- 11M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, T. M. Lyszczarz, IEEE Photonics Technol. Lett. 2007, 19, 152.
- 12H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, M. Asghari, Appl. Phys. Lett. 2002, 80, 416.
- 13M. Tabbal, T. Kim, J. M. Warrender, M. J. Aziz, B. L. Cardozo, R. S. Goldman, J. Vac. Sci. Technol. B 2007, 25, 1847.
- 14J. D. B. Bradley, P. E. Jessop, A. P. Knights, Appl. Phys. Lett. 2005, 86, 241103.
- 15B. K. Newman, M.-J. Sher, E. Mazur, T. Buonassisi, Appl. Phys. Lett. 2011, 98, 251905.
- 16D. Recht, J. T. Sullivan, R. Reedy, T. Buonassisi, M. J. Aziz, Appl. Phys. Lett. 2012, 100, 112112.
- 17P. Baeri, S. U. Campisano, G. Foti, E. Rimini, Phys. Rev. Lett. 1978, 41, 1246.
- 18G. Foti, S. U. Campisano, E. Rimini, G. Vitali, J. Appl. Phys. 1978, 49, 2569.
- 19S. U. Campisano, G. Foti, P. Baeri, M. G. Grimaldi, E. Rimini, Appl. Phys. Lett. 1980, 37, 719-.
- 20A. G. Cullis, H. C. Webber, J. M. Poate, A. L. Simons, Appl. Phys. Lett. 1980, 36, 320.
- 21C. W. White, S. R. Wilson, B. R. Appleton, F. W. Young, J. Appl. Phys. 1980, 51, 738.
- 22T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, E. Mazur, Appl. Phys. Lett. 1998, 73, 1673.
- 23C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, A. Karger, Appl. Phys. Lett. 2001, 78, 1850.
- 24B. P. Bob, A. Kohno, S. Charnvanichborikarn, J. M. Warrender, I. Umezu, M. Tabbal, J. S. Williams, M. J. Aziz, J. Appl. Phys. 2010, 107, 123506.
- 25C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, F. Y. Génin, Appl. Phys. A 2004, 79, 1635.
- 26M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, S. Martinuzzi, Thin Solid Films 2008, 516, 6791.
- 27V. V. Iyengar, B. K. Nayak, M. C. Gupta, Sol. Energy Mater. Sol. Cells 2010, 94, 2251.
- 28R. Reitano, P. M. Smith, M. J. Aziz, J. Appl. Phys. 1994, 76, 1518.
- 29V. I. Emel'yanov, D. V. Babak, Appl. Phys. A 2002, 74, 797.
- 30M. J. Aziz, J. Y. Tsao, M. O. Thompson, P. S. Peercy, C. W. White, Phys. Rev. Lett. 1986, 56, 2489.
- 31M. J. Aziz, C. W. White, Phys. Rev. Lett. 1986, 57, 2675.
- 32L. M. Goldman, M. J. Aziz, J. Mater. Res. 1987, 2, 524.
- 33M.-J. Sher, M. T. Winkler, E. Mazur, MRS Bull. 2011, 36, 439.
- 34S. E. Han, G. Chen, Nano Lett. 2010, 10, 4692.
- 35P. L. Liu, R. Yen, N. Bloembergen, R. T. Hodgson, Appl. Phys. Lett. 1979, 34, 864.
- 36J. Bonse, M. Munz, H. Sturm, J. Appl. Phys. 2005, 97, 013538.
- 37D. C. Emmony, R. P. Howson, L. J. Willis, Appl. Phys. Lett. 1973, 23, 598.
- 38T. J. Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, M. Sentis, J. Appl. Phys. 2013, 114, 083104.
- 39B. R. Tull, J. E. Carey, E. Mazur, J. P. McDonald, S. M. Yalisove, MRS Bull. 2006, 31, 626.
- 40N. Baber, H. G. Grimmeiss, M. Kleverman, P. Omling, M. Z. Iqbal, J. Appl. Phys. 1987, 62, 2853.
- 41A. Fazzio, M. J. Caldas, A. Zunger, Phys. Rev. B 1985, 32, 934.
- 42F. L. Thiel, S. K. Ghandhi, J. Appl. Phys. 1970, 41, 254.
- 43S. Weiss, R. Beckmann, R. Kassing, Appl. Phys. A 1990, 50, 151.
- 44K. S. R. Koteswara Rao, V. Kumar, S. K. Premachandran, K. P. Raghunath, J. Appl. Phys. 1991, 69, 2714.
- 45L. L. Rosier, C. T. Sah, Solid-State Electron. 1971, 14, 41.
- 46L. L. Rosier, C. T. Sah, J. Appl. Phys. 1971, 42, 4000.
- 47F. Richou, G. Pelous, D. Lecrosnier, Appl. Phys. Lett. 1977, 31, 525.
- 48S. D. Brotherton, P. Bradley, J. Bicknell, J. Appl. Phys. 1979, 50, 3396.
- 49T. H. Ning, C. T. Sah, Phys. Rev. B 1971, 4, 3468.
- 50G. A. Thomas, M. Capizzi, F. DeRosa, R. N. Bhatt, T. M. Rice, Phys. Rev. B 1981, 23, 5472.
- 51K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, O. D. Dubon, P. Becla, Phys. Rev. Lett. 2003, 91, 246403.
- 52W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, I. Miotkowski, M. J. Seong, H. Alawadhi, A. K. Ramdas, Phys. Rev. Lett. 2000, 85, 1552.
- 53F. Liu, M. Wang, Y. Berencén, S. Prucnal, M. Engler, R. Hübner, Y. Yuan, R. Heller, R. Böttger, L. Rebohle, W. Skorupa, M. Helm, S. Zhou, Sci. Rep. 2018, 8, 4164.
- 54E. Ertekin, M. T. Winkler, D. Recht, A. J. Said, M. J. Aziz, T. Buonassisi, J. C. Grossman, Phys. Rev. Lett. 2012, 108, 026401.
- 55M. T. Winkler, D. Recht, M.-J. Sher, A. J. Said, E. Mazur, M. J. Aziz, Phys. Rev. Lett. 2011, 106, 178701.
- 56A. Luque, A. Martí, E. Antolín, C. Tablero, Phys. B 2006, 382, 320.
- 57K. Wang, J. Gao, H. Yang, X. Wang, Y. Wang, Z. Zhang, Appl. Surf. Sci. 2019, 464, 502.
- 58J. E. Carey, C. H. Crouch, M. Shen, E. Mazur, Opt. Lett. 2005, 30, 1773.
- 59M. A. Sheehy, B. R. Tull, C. M. Friend, E. Mazur, Mater. Sci. Eng. B 2007, 137, 289.
- 60M. A. Sheehy, L. Winston, J. E. Carey, C. M. Friend, E. Mazur, Chem. Mater. 2005, 17, 3582.
- 61M.-J. Sher, N. M. Mangan, M. J. Smith, Y.-T. Lin, S. Marbach, T. M. Schneider, S. Gradečak, M. P. Brenner, E. Mazur, J. Appl. Phys. 2015, 117, 125301.
- 62B. R. Tull, M. T. Winkler, E. Mazur, Appl. Phys. A 2009, 96, 327.
- 63E. García-Hemme, D. Caudevilla, S. Algaidy, F. Pérez-Zenteno, R. García-Hernansanz, J. Olea, D. Pastor, Á. del Prado, E. San Andrés, I. Mártil, G. González-Díaz, Adv. Electron. Mater. 2021, 8, 2100788.
- 64Y. Yang, J.-H. Zhao, C. Li, Q.-D. Chen, Z.-G. Chen, H.-B. Sun, H.-B. Sun, H.-B. Sun, Opt. Lett. 2021, 46, 3300.
- 65X. Qiu, Z. Wang, X. Hou, X. Yu, D. Yang, Photonics Res. 2019, 7, 351.
- 66J. H. Zhao, X. B. Li, Q. D. Chen, Z. G. Chen, H. B. Sun, Mater. Today Nano 2020, 11, 100078.
- 67X.-Y. Yu, J.-H. Zhao, C.-H. Li, Q.-D. Chen, H.-B. Sun, IEEE Trans. Nanotechnol. 2017, 16, 502.
- 68J. T. Sullivan, C. B. Simmons, J. J. Krich, A. J. Akey, D. Recht, M. J. Aziz, T. Buonassisi, J. Appl. Phys. 2013, 114, 103701.
- 69C. Li, J.-H. Zhao, X. Chen, F.-Y. Li, X.-L. Zhang, Z.-G. Chen, Q.-D. Chen, Semicond. Sci. Technol. 2020, 35, 015019.
- 70J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, T. Buonassisi, Nat. Commun. 2014, 5, 3011.
- 71R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, C. M. Friend, J. Appl. Phys. 2003, 93, 2626.
- 72C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, F. Y. Génin, Appl. Phys. Lett. 2004, 84, 1850.
- 73L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhães-Paniago, M. A. Pimenta, Appl. Phys. Lett. 2006, 88, 163106.
- 74Y.-T. Lin, N. Mangan, S. Marbach, T. M. Schneider, G. Deng, S. Zhou, M. P. Brenner, E. Mazur, Appl. Phys. Lett. 2015, 106, 062105.
- 75C. B. Simmons, A. J. Akey, J. J. Krich, J. T. Sullivan, D. Recht, M. J. Aziz, T. Buonassisi, J. Appl. Phys. 2013, 114, 243514.
- 76B. Franta, D. Pastor, H. H. Gandhi, P. H. Rekemeyer, S. Gradečak, M. J. Aziz, E. Mazur, J. Appl. Phys. 2015, 118, 225303.
- 77S. Huang, Q. Wu, Z. Jia, X. Jin, X. Fu, H. Huang, X. Zhang, J. Yao, J. Xu, Adv. Opt. Mater. 2020, 8, 1901808.
- 78Z. Jia, Q. Wu, X. Jin, S. Huang, J. Li, M. Yang, H. Huang, J. Yao, J. Yao, J. Xu, Opt. Express 2020, 28, 5239.
- 79Y. Berencén, S. Prucnal, F. Liu, I. Skorupa, R. Hübner, L. Rebohle, S. Zhou, H. Schneider, M. Helm, W. Skorupa, Sci. Rep. 2017, 7, 43688.
- 80C. Li, J.-H. Zhao, Y. Yang, Q.-D. Chen, Z.-G. Chen, H.-B. Sun, IEEE Sens. J. 2021, 21, 25695.
- 81K. Zhang, K. Zhang, K. Zhang, J. He, T. He, T. He, T. He, Q. Li, Q. Li, Q. Li, M. Peng, J. Guo, J. Guo, T. Zhang, T. Zhang, X. Wang, H. Wen, H. Zhu, N. Li, N. Li, P. Wang, P. Wang, Y. Dan, Y. Dan, W. Hu, W. Hu, W. Hu, Opt. Lett. 2021, 46, 5165.
- 82F. Priolo, J. M. Poate, D. C. Jacobson, J. L. Batstone, J. S. Custer, M. O. Thompson, Appl. Phys. Lett. 1988, 53, 2486.
- 83A. G. Cullis, D. T. J. Hurle, H. C. Webber, N. G. Chew, J. M. Poate, P. Baeri, G. Foti, Appl. Phys. Lett. 1981, 38, 642.
- 84J. Narayan, J. Appl. Phys. 1981, 52, 1289.
- 85J. Narayan, J. Cryst. Growth 1982, 59, 583.
- 86S. U. Campisano, P. Baeri, Appl. Phys. Lett. 1983, 42, 1023.
- 87D. E. Hoglund, M. O. Thompson, M. J. Aziz, Phys. Rev. B 1998, 58, 189.
- 88D. Recht, M. J. Smith, S. Charnvanichborikarn, J. T. Sullivan, M. T. Winkler, J. Mathews, J. M. Warrender, T. Buonassisi, J. S. Williams, S. Gradečak, M. J. Aziz, J. Appl. Phys. 2013, 114, 124903.
- 89J. M. Warrender, Q. Hudspeth, G. Malladi, H. Efstathiadis, J. Mathews, Appl. Phys. Lett. 2016, 109, 231104.
- 90S. Q. Lim, A. J. Akey, E. Napolitani, P. K. Chow, J. M. Warrender, J. S. Williams, J. Appl. Phys. 2021, 129, 065701.
- 91S. K. Sundaram, E. Mazur, Nat. Mater. 2002, 1, 217.
- 92K. C. Phillips, H. H. Gandhi, E. Mazur, S. K. Sundaram, Adv. Opt. Photonics 2015, 7, 684.
- 93X. Qiu, X. Yu, S. Yuan, Y. Gao, X. Liu, Y. Xu, D. Yang, Adv. Opt. Mater. 2017, 6, 1700638.
- 94P. K. Chow, W. Yang, Q. Hudspeth, S. Q. Lim, J. S. Williams, J. M. Warrender, J. Appl. Phys. 2018, 123, 133101.
- 95W. Yang, A. J. Akey, L. A. Smillie, J. P. Mailoa, B. C. Johnson, J. C. McCallum, D. Macdonald, T. Buonassisi, M. J. Aziz, J. S. Williams, Phys. Rev. Mater. 2017, 1, 074602.
- 96H. Weman, A. Henry, T. Begum, B. Monemar, O. O. Awadelkarim, J. L. Lindström, J. Appl. Phys. 1989, 65, 137.
- 97E. García-Hemme, R. García-Hernansanz, J. Olea, D. Pastor, A. del Prado, I. Mártil, G. González-Díaz, Appl. Phys. Lett. 2014, 104, 211105.
- 98F. Liu, S. Prucnal, R. Hübner, Y. Yuan, W. Skorupa, M. Helm, S. Zhou, J. Phys. D: Appl. Phys. 2016, 49, 245104.
- 99J. Mathews, A. J. Akey, D. Recht, G. Malladi, H. Efstathiadis, M. J. Aziz, J. M. Warrender, Appl. Phys. Lett. 2014, 104, 112102.
- 100H. Castán, E. Pérez, H. García, S. Dueñas, L. Bailón, J. Olea, D. Pastor, E. García-Hemme, M. Irigoyen, G. González-Díaz, J. Appl. Phys. 2013, 113, 024104.
- 101J. Olea, E. López, E. Antolín, A. Martí, A. Luque, E. García-Hemme, D. Pastor, R. García-Hernansanz, A. del Prado, G. González-Díaz, J. Phys. D: Appl. Phys. 2016, 49, 055103.
- 102M. V. Kurik, Phys. Status Solidi A, 1971, 8, 9.
- 103A. J. Kronemeijer, V. Pecunia, D. Venkateshvaran, M. Nikolka, A. Sadhanala, J. Moriarty, M. Szumilo, H. Sirringhaus, Adv. Mater. 2014, 26, 728.
- 104J. J. Krich, B. I. Halperin, A. Aspuru-Guzik, J. Appl. Phys. 2012, 112, 013707.
- 105J. T. Sullivan, C. B. Simmons, T. Buonassisi, J. J. Krich, IEEE J. Photovoltaics 2015, 5, 212.
- 106C. Wen, Z. Q. Shi, Z. J. Wang, J. X. Wang, Y. J. Yang, Y. J. Ma, W. B. Yang, Opt. Laser Technol. 2021, 144, 10.