Enhanced Thermoelectric Properties in p-Type Double Half-Heusler Ti2−yHfyFeNiSb2−xSnx Compounds
Qingmei Wang
Department of Materials Science and Engineering, Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorXiaofang Li
Department of Materials Science and Engineering, Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorChen Chen
Department of Materials Science and Engineering, Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorWenhua Xue
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing, 100190 P. R. China
Search for more papers by this authorXiaodong Xie
Department of Materials Science and Engineering, Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorFeng Cao
School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorJiehe Sui
State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 P. R. China
Search for more papers by this authorCorresponding Author
Yumei Wang
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing, 100190 P. R. China
Search for more papers by this authorXingjun Liu
Department of Materials Science and Engineering, Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen, Guangdong, 518055 P. R. China
State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 P. R. China
Search for more papers by this authorCorresponding Author
Qian Zhang
Department of Materials Science and Engineering, Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorQingmei Wang
Department of Materials Science and Engineering, Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorXiaofang Li
Department of Materials Science and Engineering, Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorChen Chen
Department of Materials Science and Engineering, Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorWenhua Xue
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing, 100190 P. R. China
Search for more papers by this authorXiaodong Xie
Department of Materials Science and Engineering, Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorFeng Cao
School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorJiehe Sui
State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 P. R. China
Search for more papers by this authorCorresponding Author
Yumei Wang
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing, 100190 P. R. China
Search for more papers by this authorXingjun Liu
Department of Materials Science and Engineering, Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen, Guangdong, 518055 P. R. China
State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 P. R. China
Search for more papers by this authorCorresponding Author
Qian Zhang
Department of Materials Science and Engineering, Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorAbstract
Double half-Heusler Ti2FeNiSb2-based compounds, which can be regarded as a combination of 17-electron TiFeSb and 19-electron TiNiSb, have a lower intrinsic thermal conductivity due to the smaller group velocity phonons and the disordered scattering by Fe/Ni. An enhanced room-temperature Hall carrier concentration of ≈4.8 × 1021 cm−3 is achieved by doping Sn on the Sb site in a series of Ti2FeNiSb2−xSnx (x = 0.2, 0.3, 0.4, and 0.5) samples. Combined with the further decreased lattice thermal conductivity by alloying with Hf2FeNiSb2, a low lattice thermal conductivity of ≈1.95 W m−1 K−1 and a peak thermoelectric figure of merit (ZT) of ≈0.52 at 923 K are obtained in Ti1.6Hf0.4FeNiSb1.7Sn0.3, indicating the promising applications of double half-Heusler compounds.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1G. J. Snyder, E. S. Toberer, Nat. Mater. 2008, 7, 105.
- 2L. E. Bell, Science 2008, 321, 1457.
- 3T. Zhu, Y. Liu, C. Fu, J. P. Heremans, J. G. Snyder, X. Zhao, Adv. Mater. 2017, 29, 1605884.
- 4J. Mao, Z. Liu, J. Zhou, H. Zhu, Q. Zhang, G. Chen, Z. Ren, Adv. Phys. 2018, 67, 69.
- 5L. Huang, Q. Zhang, B. Yuan, X. Lai, X. Yan, Z. Ren, Mater. Res. Bull. 2016, 76, 107.
- 6E. Rausch, B. Balke, T. Deschauer, S. Ouardi, C. Felser, APL Mater. 2015, 3, 041516.
- 7H. Zhu, J. Mao, Y. Li, J. Sun, Y. Wang, Q. Zhu, G. Li, Q. Song, J. Zhou, Y. Fu, R. He, T. Tong, Z. Liu, W. Ren, L. You, Z. Wang, J. Luo, A. Sotnikov, J. Bao, K. Nielsch, G. Chen, D. J. Singh, Z. Ren, Nat. Commun. 2019, 10, 1.
- 8C. Fu, T. Zhu, Y. Liu, H. Xie, X. Zhao, Energy Environ. Sci. 2015, 8, 216.
- 9Y. Liu, H. Xie, C. Fu, G. J. Snyder, X. Zhao, T. Zhu, Mater. Chem. A, 2015, 3, 22716.
- 10X. Yan, W. Liu, H. Wang, S. Chen, J. Shiomi, K. Esfarjani, H. Wang, D. Wang, G. Chen, Z. Ren, Energy Environ. Sci. 2012, 5, 7543.
- 11X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J. W. Simonson, S. J. Poon, T. M. Tritt, G. Chen, Z. F. Ren, Nano Lett. 2011, 11, 556.
- 12E. Rausch, B. Balke, J. M. Stahlhofen, S. Ouardi, U. Burkhardt, C. Felser, J. Mater. Chem. C 2015, 3, 10409.
- 13M. Schwall, B. Balke, Phys. Chem. Chem. Phys. 2013, 15, 1868.
- 14J. Yu, C. Fu, Y. Liu, K. Xia, U. Aydemir, T. C. Chasapis, G. J. Snyder, X. Zhao, T. Zhu, Adv. Energy Mater. 2018, 8, 1701313.
- 15H. Zhu, R. He, J. Mao, Q. Zhu, C. Li, J. Sun, W. Ren, Y. Wang, Z. Liu, Z. Tang, A. Sotnikov, Z. Wang, D. Broido, D. J. Singh, G. Chen, K. Nielsch, Z. Ren, Nat. Commun. 2018, 9, 1.
- 16T. Graf, C. Felser, S. S. P. Parkin, Progr. Solid State Chem. 2011, 39, 1.
- 17W. G. Zeier, J. Schmitt, G. Hautier, U. Aydemir, Z. M. Gibbs, C. Felser, G. J. Snyder, Nat. Rev. Mater. 2016, 1, 1.
- 18D. Jung, H. J. Koo, M. H. Whangbo, J. Mol. Struct. THEOCHEM 2000, 527, 113.
- 19H. Zhang, Y. Wang, L. Huang, S. Chen, H. Dahal, D. Wang, Z. Ren, J. Alloys Compd. 2016, 654, 321.
- 20L. Huang, R. He, S. Chen, H. Zhang, K. Dahal, H. Zhou, H. Wang, Q. Zhang, Z. Ren, Mater. Res. Bull. 2015, 70, 773.
- 21W. G. Zeier, S. Anand, L. Huang, R. He, H. Zhang, Z. Ren, C. Wolverton, G. J. Snyder, Chem. Mater. 2017, 29, 1210.
- 22K. Xia, Y. Liu, S. Anand, G. J. Snyder, J. Xin, J. Yu, X. Zhao, T. Zhu, Adv. Funct. Mater. 2018, 28, 1705845.
- 23K. Kutorasinski, J. Tobola, S. Kaprzyk, Phys. Status Solidi A 2014, 211, 1229.
- 24K. Kutorasinski, J. Tobola, S. Kaprzyk, AIP Conf. Proc. 2012, 1449, 57.
- 25Z. H. Lai, J. Ma, J. C. Zhu, Mater. Sci. Forum 2013, 762, 471.
10.4028/www.scientific.net/MSF.762.471 Google Scholar
- 26J. Toboła, L. Jodin, P. Pecheur, H. Scherrer, G. Venturini, B. Malaman, S. Kaprzyk, Phys. Rev. B 2001, 64, 155103.
- 27S. Anand, M. Wood, Y. Xia, C. Wolverton, G. J. Snyder, Joule 2019, 3, 1226.
- 28J. Tobola, L. Jodin, P. Pecheur, G. Venturini, J. Alloys Compd. 2004, 383, 328.
- 29Z. Liu, S. Guo, Y. Wu, J. Mao, Q. Zhu, H. Zhu, Y. Pei, J. Sui, Y. Zhang, Z. Ren, Adv. Funct. Mater. 2019, 29, 1905044.
- 30E. Rausch, B. Balke, S. Ouardi, C. Felser, Phys. Chem. Chem. Phys. 2014, 16, 25258.
- 31M. Zhou, L. Chen, C. Feng, D. Wang, J.-F. Li, J. Appl. Phys. 2007, 101, 113714.
- 32M. Schrade, K. Berland, S. N. H. Eliassen, M. N. Guzik, C. Echevarria-Bonet, M. H. Sørby, P. Jenuš, B. C. Hauback, R. Tofan, A. E. Gunnæs, C. Persson, O. M. Løvvik, T. G. Finstad, Sci. Rep. 2017, 7, 1.
- 33W. Xie, Q. Jin, X. Tang, J. Appl. Phys. 2008, 103, 043711.
- 34S. J. Pennycook, P. D. Nellist, Scanning Transmission Electron Microscopy, Springer, New York, USA 2011.
10.1007/978-1-4419-7200-2 Google Scholar
- 35Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G. J. Snyder, Nature, 2011, 473, 66.
- 36Q. Zhang, F. Cao, W. Liu, K. Lukas, B. Yu, S. Chen, C. Opeil, D. Broido, G. Chen, Z. Ren, J. Am. Chem. Soc. 2012, 134, 10031.
- 37C. W. Li, J. Hong, A. F. May, D. Bansal, S. Chi, T. Hong, G. Ehlers, O. Delaire, Nat. Phys. 2015, 11, 1063.
- 38T. Zhu, C. Fu, H. Xie, Y. Liu, X. Zhao, Adv. Energy Mater. 2015, 5, 1500588.
- 39J. Yu, K. Xia, X. Zhao, T. Zhu, J. Phys. D Appl. Phys. 2018, 51, 113001.
- 40W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, J. Poon, T. Tritt, Nanomaterials 2012, 2, 379.
- 41T. Zhou, J. Mao, J. Jiang, S. Song, H. Zhu, Q. Zhu, Q. Zhang, W. Ren, Z. Wang, C. Wang, J. Mater. Chem. C 2019, 7, 434.