Sonochemical Modification of SiGe Layers for Photovoltaic Applications
Andriy Nadtochiy
Faculty of Physics, Taras Shevchenko National University of Kyiv, Kyiv, 01601 Ukraine
Search for more papers by this authorCorresponding Author
Oleg Korotchenkov
Faculty of Physics, Taras Shevchenko National University of Kyiv, Kyiv, 01601 Ukraine
Search for more papers by this authorCorresponding Author
Viktor Schlosser
Electronic Properties of Materials, Faculty of Physics, University of Vienna, Wien, A-1090 Austria
Search for more papers by this authorAndriy Nadtochiy
Faculty of Physics, Taras Shevchenko National University of Kyiv, Kyiv, 01601 Ukraine
Search for more papers by this authorCorresponding Author
Oleg Korotchenkov
Faculty of Physics, Taras Shevchenko National University of Kyiv, Kyiv, 01601 Ukraine
Search for more papers by this authorCorresponding Author
Viktor Schlosser
Electronic Properties of Materials, Faculty of Physics, University of Vienna, Wien, A-1090 Austria
Search for more papers by this authorAbstract
To improve the photovoltaic response of SiGe and amorphous silicon (a-Si)/SiGe surfaces, a sonochemical treatment in chloroform (CHCl3) is used. The use of the sonochemical reaction slows down the observed surface photovoltage (SPV) decay and enhances its magnitude in SiGe and a-Si/SiGe thin layers grown on Si. The average surface-integrated photovoltage and decay time can increase up to 50%. This effect is not observed in distilled water, indicative of the fact that CH-containing radicals can lead to the observed improvements. It is suggested that the effect can be explained as follows: CHCl3 is decomposed and produces hydrocarbon chains, which are then decomposed further away into hydrogen and carbon. The reactive Si dangling bonds revealed on the surface of SiGe alloys are saturated by the hydrocarbon species to passivate the surface. It is, therefore, advantageous to use sonochemical surface modification of silicon–germanium-based photovoltaic materials in chloroform solutions.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1K. Wada, L. C. Kimerling, Photonics and Electronics with Germanium, Wiley-VCH, Weinheim, Germany 2015.
10.1002/9783527650200 Google Scholar
- 2S. A. Hadi, P. Hashemi, N. DiLello, E. Polyzoeva, A. Nayfeh, J. L. Hoyt, Sol. Energy 2014, 103, 154.
- 3M. A. Khan, R. Sato, K. Sawano, P. Sichanugrist, A. Lukianov, Y. Ishikawa, J. Phys. D: Appl. Phys. 2018, 51, 185107.
- 4R. Oshima, M. Yamanaka, H. Kawanami, I. Sakata, K. Matsubara, T. Sugaya, Jpn. J. Appl. Phys. 2015, 54, 012301.
- 5A. Podolian, A. Nadtochiy, O. Korotchenkov, B. Romanyuk, V. Melnik, V. Popov, J. Appl. Phys. 2018, 124, 095703.
- 6J. P. Seif, D. Menda, A. Descoeudres, L. Barraud, O. Özdemir, C. Ballif, S. De Wolf, J. Appl. Phys. 2016, 120, 054501.
- 7 Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Eds: W. G. J. H. M. van Sark, L. Korte, F. Roca), Springer, Berlin, Germany 2012.
10.1007/978-3-642-22275-7 Google Scholar
- 8 Amorphous Silicon/Crystalline Silicon Heterojunction Solar Cells (Ed: W. R. Fahrner), Chemical Industry Press / Springer, Beijing, China / Berlin, Germany 2013.
10.1007/978-3-642-37039-7 Google Scholar
- 9T. Krajangsang, S. Inthisang, J. Sritharathikhun, A. Hongsingthong, A. Limmanee, S. Kittisontirak, P. Chinnavornrungsee, R. Phatthanakun, K. Sriprapha, Thin Solid Films 2017, 628, 107.
- 10C. H. Seager, D. S. Ginley, Appl. Phys. Lett. 1979, 34, 337.
- 11A. Mimura, N. Konishi, K. Ono, J.-I. Ohwada, Y. Hosokawa, Y.-A. Ono, T. Suzuki, K. Miyata, H. Kawakami, Appl. Phys. Lett. 1989, 36, 351.
- 12N. Sridhar, D. D. L. Chung, W. A. Anderson, J. Coleman, Appl. Phys. Lett. 1995, 78, 7304.
- 13J. A. Peck, P. Zonooz, D. Curreli, G. A. Panici, B. E. Jurczyk, D. N. Ruzic, Surf. Coat. Technol. 2017, 325, 370.
- 14S. Honda, T. Mates, B. Rezek, A. Fejfar, J. Kočka, J. Non-Cryst. Sol. 2008, 354, 2310.
- 15A. Madan, Sol. Wind Technol. 1988, 5, 473.
10.1016/0741-983X(88)90038-0 Google Scholar
- 16R. J. Loveland, W. E. Spear, A. Al-Sharbaty, J. Non Cryst. Solids 1973/74, 13, 55.
- 17H. Heinz, C. Pramanik, O. Heinz, Y. Ding, R. K. Mishra, D. Marchon, R. J. Flatt, I. Estrela-Lopis, J. Llop, S. Moya, R. F. Ziolo, Surf. Sci. Rep. 2017, 72, 1.
- 18J. D. Swalen, D. L. Allara, J. D. Andrade, E. A. Chandross, S. Garoff, J. Israelachvili, T. J. McCarthy, R. Murray, R. F. Pease, J. F. Rabolt, K. J. Wynne, H. Yu, Langmuir 1987, 3, 932.
- 19K. A. Pressprich, S. G. Maybury, R. E. Thomas, R. W. Linton, E. A. Irene, R. W. Murray, J. Phys. Chem. 1989, 93, 5563.
- 20J.-M. Lévêque, M. Fujita, A. Bosson, H. Sohmiya, C. Pétrier, N. Komatsu, T. Kimura, Ultrason. Sonochem. 2011, 18, 753.
- 21L. Paniwnyk, A. Cobley, Phys. Procedia 2009, 3, 1103.
10.1016/j.phpro.2010.01.230 Google Scholar
- 22A. Nadtochiy, A. Podolian, O. Korotchenkov, J. Schmid, E. Kancsar, V. Schlosser, Phys. Stat. Sol. C 2011, 8, 2927.
- 23K. S. Suslick, Science 1990, 247, 1439.
- 24A. Podolian, V. Kozachenko, A. Nadtochiy, N. Borovoy, O. Korotchenkov, J. Appl. Phys. 2010, 107, 093706.
- 25R. A. Sinton, A. Cuevas, Appl. Phys. Lett. 1996, 69, 2510.
- 26A. Cuevas, D. Macdonald, Sol. Energy 2004, 76, 255.
- 27M. Hendriks, S. Radelaar, A. M. Beers, J. Bloem, Thin Solid Films 1984, 113, 59.
- 28D. L. Williamson, Sol. Energy Mater. Sol. Cells 2003, 78, 41.
- 29 Analog Devices, SPICE simulation software, https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html (Accessed: February 2019).
- 30A. Nadtochiy, O. Korotchenkov, M. Drapalik, V. Schlosser, Solid State Phenom. 2011, 178–179, 221.
- 31A. F. Wells, Structural Inorganic Chemistry, Clarendon Press, Oxford, UK 1962.
- 32S. S. Kumaran, M.-C. Su, K. P. Lim, J. V. Michael, S. J. Klippenstein, J. DiFelice, P. S. Mudipalli, J. H. Kiefer, D. A. Dixon, K. A. Peterson, Phys. Chem. A 1997, 101, 8653.
- 33Y. S. Chun, E. S. Lee, M. G. Jeong, RSC Adv. 2016, 6, 96669.
- 34K. Abderrafi, R. García-Calzada, J. F. Sanchez-Royo, V. S. Chirvony, S. Agouram, R. Abargues, R. Ibáñez, J. P. Martínez-Pastor, J. Phys. D: Appl. Phys. 2013, 46, 135301.
- 35F. Rochet, G. Dufour, H. Roulet, B. Pelloie, J. Perriere, E. Fogarassy, A. Slaoui, M. Froment, Phys. Rev. B 1988, 37, 6468.
- 36M. I. Ortiz, A. Rodríguez, J. Sangrador, T. Rodríguez, M. Avella, J. Jiménez, C. Ballesteros, Nanotechnology 2005, 16, S197.
- 37W. Wu, X. Zou, Q. Li, B. Liu, B. Liu, R. Liu, D. Liu, Z. Li, W. Cui, Z. Liu, D. Li, T. Cui, G. Zou, J. Nanomater. 2011, 3, 841701.
- 38V. Kuryliuk, A. Nadtochiy, O. Korotchenkov, C.-C. Wang, P.-W. Li, Phys. Chem. Chem. Phys. 2015, 17, 13429.
- 39K. Mui, F. W. Smith, Phys. Rev. B 1988, 38, 10623.
- 40W. M. M. Kessels, D. C. Marra, M. C. M. van de Sanden, Eray S.Aydil, J. Vac. Sci. Technol. A 2002, 20, 781.
- 41M. H. Brodsky, M. Cardona, J. J. Cuomo, Phys. Rev. B 1977, 16, 3556.
- 42Z. Yamani, W. H. Thompson, L. AbuHassan, M. H. Nayfeh, Appl. Phys. Lett. 1997, 70, 3404
- 43A. O. Kozak, V. I. Ivashchenko, O. K. Porada, L. A. Ivashchenko, T. V. Tomila, V. S. Manjara, G. V. Klishevych, Mat. Sci. Semicon. Proc. 2018, 88, 65.